Mark Mossberg 1e76998eb7 Add infrastructure for core models (#244)
* Rename libc.py to models.py

* Clean old unused libc.py code

* Make models top level importable

* Add State level model invocation function

So user is not required to pass in state at to a platform level func

* Explicitly mark what is in the public API

Protects against accidentally making something a public API just because
it has a docstring

* clean

* Move models.py to top level

* Rm models

* Fix docstring typo

* Add default param name, move comment

* Update docstring
2017-05-11 13:25:43 -04:00
2017-05-11 12:20:00 -04:00
2017-04-27 15:48:28 -04:00
2017-02-13 18:30:25 -05:00
2017-04-27 16:36:23 -04:00
2017-05-05 15:21:52 -04:00

Manticore

Build Status Slack Status Documentation Status Bountysource

Manticore is a prototyping tool for dynamic binary analysis, with support for symbolic execution, taint analysis, and binary instrumentation.

Features

  • Input Generation: Manticore automatically generates inputs that trigger unique code paths
  • Crash Discovery: Manticore discovers inputs that crash programs via memory safety violations
  • Execution Tracing: Manticore records an instruction-level trace of execution for each generated input
  • Programmatic Interface: Manticore exposes programmatic access to its analysis engine via a Python API

Manticore supports binaries of the following formats, operating systems, and architectures. It has been primarily used on binaries compiled from C and C++.

  • OS/Formats: Linux ELF, Windows Minidump
  • Architectures: x86, x86_64, ARMv7 (partial)

Requirements

Manticore is supported on Linux and requires Python 2.7, pip 7.1.0 or higher, and the Z3 Theorem Prover. Ubuntu 16.04 is strongly recommended.

Quick Start

Install and try Manticore in a few shell commands (see an asciinema):

# Install system dependencies
sudo apt-get update && sudo apt-get install z3 python-pip -y
python -m pip install -U pip

# Install manticore and its dependencies
git clone https://github.com/trailofbits/manticore.git && cd manticore
sudo pip install --no-binary capstone .

# Build the examples
cd examples/linux
make

# Use the Manticore CLI
manticore basic
cat mcore_*/*1.stdin | ./basic
cat mcore_*/*2.stdin | ./basic

# Use the Manticore API
cd ../script
python count_instructions.py ../linux/helloworld

Installation

Make sure that Z3 is installed and available on your PATH. On Ubuntu, this is as simple as sudo apt-get install z3.

Option 1: Perform a user install (requires ~/.local/bin in your PATH).

echo "PATH=\$PATH:~/.local/bin" >> ~/.profile
source ~/.profile
git clone https://github.com/trailofbits/manticore.git && cd manticore
pip install --user --no-binary capstone .

Option 2: Use a virtual environment (requires virtualenvwrapper or similar).

pip install virtualenvwrapper
echo "source /usr/local/bin/virtualenvwrapper.sh" >> ~/.profile
source ~/.profile
git clone https://github.com/trailofbits/manticore.git && cd manticore
mkvirtualenv manticore
pip install --no-binary capstone .

Option 3: Perform a system install.

git clone https://github.com/trailofbits/manticore.git && cd manticore
sudo pip install --no-binary capstone .

Once installed, the manticore CLI tool and its Python API will be available.

For developers

For a dev install that includes dependencies for tests, run:

pip install --no-binary capstone --no-binary keystone-engine -e .[dev]

You can run the tests with the commands below:

cd manticore
# all tests
nosetests
# just one file
nosetests tests/test_armv7cpu.py
# just one test class
nosetests tests/test_armv7cpu.py:Armv7CpuInstructions
# just one test
nosetests tests/test_armv7cpu.py:Armv7CpuInstructions.test_mov_imm_min

Usage

$ manticore ./path/to/binary  # runs, and creates a mcore_* directory with analysis results

or

# example Manticore script
from manticore import Manticore

hook_pc = 0x400ca0

m = Manticore('./path/to/binary')

@m.hook(hook_pc)
def hook(state):
  cpu = state.cpu
  print 'eax', cpu.EAX
  print cpu.read_int(cpu.SP)

  m.terminate()  # tell Manticore to stop

m.run()

See the wiki, examples directory, and API reference for further documentation.

Description
No description provided
Readme 12 MiB
Languages
Python 100%