fwknop/common/fko_util.c
2016-04-10 12:03:59 -05:00

1114 lines
34 KiB
C

/**
* \file common/fko_util.c
*
* \brief Provide a set of common utility functions that fwknop can use.
*/
/* Fwknop is developed primarily by the people listed in the file 'AUTHORS'.
* Copyright (C) 2009-2015 fwknop developers and contributors. For a full
* list of contributors, see the file 'CREDITS'.
*
* License (GNU General Public License):
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
* USA
*
*****************************************************************************
*/
#include "fko_common.h"
#include "fko_util.h"
#include <errno.h>
#include <stdarg.h>
#ifndef WIN32
/* for inet_aton() IP validation
*/
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#endif
/* Check for a FKO error returned by a function an return the error code */
#define RETURN_ON_FKO_ERROR(e, f) do { if (((e)=(f)) != FKO_SUCCESS) { return (e); } } while(0);
#define FKO_ENCRYPTION_MODE_BUFSIZE 16 /*!< Maximum size of an encryption mode string */
#define FKO_ENC_MODE_SUPPORTED 0 /*!< Defined a supported fko encryption mode */
#define FKO_ENC_MODE_NOT_SUPPORTED !FKO_ENC_MODE_SUPPORTED /*!< Defined an unsupported fko encryption mode */
#define NULL_STRING "<NULL>" /*!< String which represents a NULL buffer */
#ifdef HAVE_C_UNIT_TESTS
#include "cunit_common.h"
DECLARE_TEST_SUITE(utils_test, "Utility functions test suite");
#endif
/**
* Structure to handle an encryption mode string string and its associated integer value
*/
typedef struct fko_enc_mode_str
{
const char str[FKO_ENCRYPTION_MODE_BUFSIZE]; /*!< String which represents an encryption mode value for the FKO library */
int val; /*!< Value of the encryption mode according to the FKO library */
int supported; /*!< SUPPORTED or NOT_SUPPORTED */
} fko_enc_mode_str_t;
/**
* Array to associate all of encryption modes with their respective string
*/
static fko_enc_mode_str_t fko_enc_mode_strs[] =
{
{ "CBC", FKO_ENC_MODE_CBC, FKO_ENC_MODE_SUPPORTED },
{ "ECB", FKO_ENC_MODE_ECB, FKO_ENC_MODE_SUPPORTED },
{ "CFB", FKO_ENC_MODE_CFB, FKO_ENC_MODE_SUPPORTED },
{ "PCBC", FKO_ENC_MODE_PCBC, FKO_ENC_MODE_NOT_SUPPORTED },
{ "OFB", FKO_ENC_MODE_OFB, FKO_ENC_MODE_SUPPORTED },
{ "CTR", FKO_ENC_MODE_CTR, FKO_ENC_MODE_SUPPORTED },
{ "Asymmetric", FKO_ENC_MODE_ASYMMETRIC, FKO_ENC_MODE_SUPPORTED },
{ "legacy", FKO_ENC_MODE_CBC_LEGACY_IV, FKO_ENC_MODE_SUPPORTED }
};
/* Compare all bytes with constant run time regardless of
* input characteristics (i.e. don't return early if a difference
* is found before comparing all bytes). This code was adapted
* from YaSSL which is GPLv2 after a timing bug was reported by
* Ryman through github (#85)
*/
int
constant_runtime_cmp(const char *a, const char *b, int len)
{
int good = 0;
int bad = 0;
int i;
for(i=0; i < len; i++) {
if (a[i] == b[i])
good++;
else
bad++;
}
if (good == len)
return 0;
else
return 0 - bad;
}
/* Validate encoded message length
*/
int
is_valid_encoded_msg_len(const int len)
{
#if HAVE_LIBFIU
fiu_return_on("is_valid_encoded_msg_len_val", 0);
#endif
if(len < MIN_SPA_ENCODED_MSG_SIZE || len >= MAX_SPA_ENCODED_MSG_SIZE)
return(0);
return(1);
}
/* Validate an IPv4 address
*/
int
is_valid_ipv4_addr(const char * const ip_str)
{
const char *ndx = ip_str;
int dot_ctr = 0, char_ctr = 0;
int res = 1;
#if HAVE_SYS_SOCKET_H
struct in_addr in;
#endif
if(ip_str == NULL)
return 0;
while(*ndx != '\0')
{
char_ctr++;
if(char_ctr >= MAX_IPV4_STR_LEN)
{
res = 0;
break;
}
if(*ndx == '.')
dot_ctr++;
else if(isdigit(*ndx) == 0)
{
res = 0;
break;
}
ndx++;
}
if(char_ctr >= MAX_IPV4_STR_LEN)
res = 0;
if ((res == 1) && (char_ctr < MIN_IPV4_STR_LEN))
res = 0;
if((res == 1) && dot_ctr != 3)
res = 0;
#if HAVE_SYS_SOCKET_H
/* Stronger IP validation now that we have a candidate that looks
* close enough
*/
if((res == 1) && (inet_aton(ip_str, &in) == 0))
res = 0;
#endif
return(res);
}
/* Convert a digest_type string to its integer value.
*/
short
digest_strtoint(const char *dt_str)
{
if(strcasecmp(dt_str, "md5") == 0)
return(FKO_DIGEST_MD5);
else if(strcasecmp(dt_str, "sha1") == 0)
return(FKO_DIGEST_SHA1);
else if(strcasecmp(dt_str, "sha256") == 0)
return(FKO_DIGEST_SHA256);
else if(strcasecmp(dt_str, "sha384") == 0)
return(FKO_DIGEST_SHA384);
else if(strcasecmp(dt_str, "sha512") == 0)
return(FKO_DIGEST_SHA512);
else if(strcasecmp(dt_str, "sha3_256") == 0)
return(FKO_DIGEST_SHA3_512);
else if(strcasecmp(dt_str, "sha3_512") == 0)
return(FKO_DIGEST_SHA3_512);
else
return(-1);
}
/**
* \brief Return a digest string according to a digest integer value
*
* This function checks the digest integer is valid, and write the digest
* string associated.
*
* \param digest Digest inetger value (FKO_DIGEST_MD5, FKO_DIGEST_SHA1 ...)
* \param digest_str Buffer to write the digest string
* \param digest_size size of the digest string buffer
*
* \return -1 if the digest integer value is not supported, 0 otherwise
*/
short
digest_inttostr(int digest, char* digest_str, size_t digest_size)
{
short digest_not_valid = 0;
memset(digest_str, 0, digest_size);
switch (digest)
{
case FKO_DIGEST_MD5:
strlcpy(digest_str, "MD5", digest_size);
break;
case FKO_DIGEST_SHA1:
strlcpy(digest_str, "SHA1", digest_size);
break;
case FKO_DIGEST_SHA256:
strlcpy(digest_str, "SHA256", digest_size);
break;
case FKO_DIGEST_SHA384:
strlcpy(digest_str, "SHA384", digest_size);
break;
case FKO_DIGEST_SHA512:
strlcpy(digest_str, "SHA512", digest_size);
break;
case FKO_DIGEST_SHA3_256:
strlcpy(digest_str, "SHA3_256", digest_size);
break;
case FKO_DIGEST_SHA3_512:
strlcpy(digest_str, "SHA3_512", digest_size);
break;
default:
strlcpy(digest_str, "Unknown", digest_size);
digest_not_valid = -1;
break;
}
return digest_not_valid;
}
short
hmac_digest_strtoint(const char *dt_str)
{
if(strcasecmp(dt_str, "md5") == 0)
return(FKO_HMAC_MD5);
else if(strcasecmp(dt_str, "sha1") == 0)
return(FKO_HMAC_SHA1);
else if(strcasecmp(dt_str, "sha256") == 0)
return(FKO_HMAC_SHA256);
else if(strcasecmp(dt_str, "sha384") == 0)
return(FKO_HMAC_SHA384);
else if(strcasecmp(dt_str, "sha512") == 0)
return(FKO_HMAC_SHA512);
else if(strcasecmp(dt_str, "sha3_256") == 0)
return(FKO_HMAC_SHA3_256);
else if(strcasecmp(dt_str, "sha3_512") == 0)
return(FKO_HMAC_SHA3_512);
else
return(-1);
}
/* Return encryption type string representation
*/
const char *
enc_type_inttostr(const int type)
{
if(type == FKO_ENC_MODE_UNKNOWN)
return("Unknown encryption type");
else if(type == FKO_ENCRYPTION_RIJNDAEL)
return("Rijndael");
else if(type == FKO_ENCRYPTION_GPG)
return("GPG");
return("Unknown encryption type");
}
/* Return message type string representation
*/
const char *
msg_type_inttostr(const int type)
{
if(type == FKO_COMMAND_MSG)
return("Command msg");
else if(type == FKO_ACCESS_MSG)
return("Access msg");
else if(type == FKO_NAT_ACCESS_MSG)
return("NAT access msg");
else if(type == FKO_CLIENT_TIMEOUT_ACCESS_MSG)
return("Client timeout access msg");
else if(type == FKO_CLIENT_TIMEOUT_NAT_ACCESS_MSG)
return("Client timeout NAT access msg");
else if(type == FKO_LOCAL_NAT_ACCESS_MSG)
return("Local NAT access msg");
else if(type == FKO_CLIENT_TIMEOUT_LOCAL_NAT_ACCESS_MSG)
return("Client timeout local NAT access msg");
return("Unknown message type");
}
/**
* \brief Return a hmac digest string according to a hmac digest integer value
*
* This function checks if the digest integer is valid, and write the digest
* string associated.
*
* \param digest Digest inetger value (FKO_HMAC_MD5, FKO_HMAC_SHA1 ...)
* \param digest_str Buffer to write the digest string
* \param digest_size size of the digest string buffer
*
* \return -1 if the digest integer value is not supported, 0 otherwise
*/
short
hmac_digest_inttostr(int digest, char* digest_str, size_t digest_size)
{
short digest_not_valid = 0;
memset(digest_str, 0, digest_size);
switch (digest)
{
case FKO_HMAC_MD5:
strlcpy(digest_str, "MD5", digest_size);
break;
case FKO_HMAC_SHA1:
strlcpy(digest_str, "SHA1", digest_size);
break;
case FKO_HMAC_SHA256:
strlcpy(digest_str, "SHA256", digest_size);
break;
case FKO_HMAC_SHA384:
strlcpy(digest_str, "SHA384", digest_size);
break;
case FKO_HMAC_SHA512:
strlcpy(digest_str, "SHA512", digest_size);
break;
case FKO_HMAC_SHA3_256:
strlcpy(digest_str, "SHA3_256", digest_size);
break;
case FKO_HMAC_SHA3_512:
strlcpy(digest_str, "SHA3_512", digest_size);
break;
default:
strlcpy(digest_str, "Unknown", digest_size);
digest_not_valid = -1;
break;
}
return digest_not_valid;
}
/* Validate plaintext input size
*/
int
is_valid_pt_msg_len(const int len)
{
#if HAVE_LIBFIU
fiu_return_on("is_valid_pt_msg_len_val", 0);
#endif
if(len < MIN_SPA_PLAINTEXT_MSG_SIZE || len >= MAX_SPA_PLAINTEXT_MSG_SIZE)
return(0);
return(1);
}
/**
* @brief Convert an encryption mode string to its integer value.
*
* @param enc_mode_str Encryption mode string (CBC,ECB...)
*
* @return -1 if the encryption mode string is not supported,
* otherwise the encryption mode value
*/
int
enc_mode_strtoint(const char *enc_mode_str)
{
unsigned char ndx_enc_mode;
int enc_mode_int = -1; /* Encryption mode integer value */
fko_enc_mode_str_t *enc_mode_str_pt;
/* Look into the fko_enc_mode_strs array to find out the right encryption mode */
for (ndx_enc_mode = 0 ; ndx_enc_mode < ARRAY_SIZE(fko_enc_mode_strs) ; ndx_enc_mode++)
{
enc_mode_str_pt = &(fko_enc_mode_strs[ndx_enc_mode]);
/* If the encryption mode matches, grab it */
if ( (strcasecmp(enc_mode_str, enc_mode_str_pt->str) == 0)
&& (enc_mode_str_pt->supported == FKO_ENC_MODE_SUPPORTED) )
{
enc_mode_int = enc_mode_str_pt->val;
break;
}
}
return enc_mode_int;
}
/**
* @brief Return an encryption mode string according to an enc_mode integer value
*
* This function checks if the encryption mode integer is valid, and write the
* encryption mode string associated.
*
* @param enc_mode Encryption mode integer value (FKO_ENC_MODE_CBC, FKO_ENC_MODE_ECB ...)
* @param enc_mode_str Buffer to write the encryption mode string to
* @param enc_mode_size Size of the encryption mode string buffer
*
* @return -1 if the encryption mode integer value is not supported, 0 otherwise
*/
short
enc_mode_inttostr(int enc_mode, char* enc_mode_str, size_t enc_mode_size)
{
short enc_mode_error = -1;
unsigned char ndx_enc_mode;
fko_enc_mode_str_t *enc_mode_str_pt;
/* Initialize the protocol string */
memset(enc_mode_str, 0, enc_mode_size);
/* Look into the fko_enc_mode_strs array to find out the right protocol */
for (ndx_enc_mode = 0 ; ndx_enc_mode < ARRAY_SIZE(fko_enc_mode_strs) ; ndx_enc_mode++)
{
enc_mode_str_pt = &(fko_enc_mode_strs[ndx_enc_mode]);
/* If the encryption mode matches, grab it */
if ( (enc_mode_str_pt->val == enc_mode)
&& (enc_mode_str_pt->supported == FKO_ENC_MODE_SUPPORTED) )
{
strlcpy(enc_mode_str, enc_mode_str_pt->str, enc_mode_size);
enc_mode_error = 0;
break;
}
}
return enc_mode_error;
}
int
strtol_wrapper(const char * const str, const int min,
const int max, const int exit_upon_err, int *err)
{
int val;
errno = 0;
*err = FKO_SUCCESS;
val = strtol(str, (char **) NULL, 10);
if ((errno == ERANGE || (errno != 0 && val == 0)))
{
*err = errno;
if(exit_upon_err == EXIT_UPON_ERR)
{
perror("strtol");
fprintf(stderr, "[*] Value %d out of range [(%d)-(%d)]\n",
val, min, max);
exit(EXIT_FAILURE);
}
}
if(val < min)
{
*err = FKO_ERROR_INVALID_DATA_UTIL_STRTOL_LT_MIN;
if(exit_upon_err == EXIT_UPON_ERR)
{
fprintf(stderr, "[*] Value %d out of range [(%d)-(%d)]\n",
val, min, max);
exit(EXIT_FAILURE);
}
}
/* allow max == -1 to be an exception where we don't care about the
* maximum - note that the ERANGE check is still in place above
*/
if((max >= 0) && (val > max))
{
*err = FKO_ERROR_INVALID_DATA_UTIL_STRTOL_GT_MAX;
if(exit_upon_err == EXIT_UPON_ERR)
{
fprintf(stderr, "[*] Value %d out of range [(%d)-(%d)]\n",
val, min, max);
exit(EXIT_FAILURE);
}
}
#if HAVE_LIBFIU
fiu_return_on("strtol_wrapper_lt_min",
FKO_ERROR_INVALID_DATA_UTIL_STRTOL_LT_MIN);
fiu_return_on("strtol_wrapper_gt_max",
FKO_ERROR_INVALID_DATA_UTIL_STRTOL_GT_MAX);
#endif
return val;
}
/* zero out a buffer before free()
*/
int zero_free(char *buf, int len)
{
int res = FKO_SUCCESS;
if(buf == NULL)
return res;
if(len == 0)
{
free(buf); /* always free() if buf != NULL */
return res;
}
res = zero_buf(buf, len);
free(buf);
#if HAVE_LIBFIU
fiu_return_on("zero_free_err", FKO_ERROR_ZERO_OUT_DATA);
#endif
return res;
}
/* zero out sensitive information in a way that isn't optimized out by the compiler
* since we force a comparison and return an error if there is a problem (though
* the caller should do something with this information too).
*/
int
zero_buf(char *buf, int len)
{
int i, res = FKO_SUCCESS;
#if HAVE_LIBFIU
fiu_return_on("zero_buf_err", FKO_ERROR_ZERO_OUT_DATA);
#endif
if(buf == NULL || len == 0)
return res;
if(len < 0 || len > MAX_SPA_ENCODED_MSG_SIZE)
return FKO_ERROR_ZERO_OUT_DATA;
for(i=0; i < len; i++)
buf[i] = 0x0;
for(i=0; i < len; i++)
if(buf[i] != 0x0)
res = FKO_ERROR_ZERO_OUT_DATA;
return res;
}
#if defined(WIN32) || !defined(HAVE_STRNDUP)
/* Windows does not have strndup, so we well implement it here.
* This was the Public Domain C Library (PDCLib).
*/
char
*strndup( const char * s, size_t len )
{
char* ns = NULL;
if(s) {
ns = calloc(1, len + 1);
if(ns) {
ns[len] = 0;
// strncpy to be pedantic about modification in multithreaded
// applications
return strncpy(ns, s, len);
}
}
return ns;
}
#endif
/**
* @brief Add a printf style message to a buffer
*
* This function allows to append a printf style message to a buffer
* and prevents buffer overflow by taking care of the size the buffer.
* It returns the number of bytes really written to the buffer.
* Thus if an error is encoutered during the process the number of bytes
* written is set to 0. This way the user knows exactly how many bytes
* can be appended afterwards.
*
* @param buf Buffer to write the formatted message to
* @param buf_size Maximum number of bytes to write to the buffer
* @param msg Message to format and to append to the buffer
*
* @return the number of bytes written to the buffer
*/
static int
append_msg_to_buf(char *buf, size_t buf_size, const char* msg, ...)
{
int bytes_written = 0; /* Number of bytes written to buf */
va_list ap;
/* Check if the buffer is valid */
if (buf_size > 0)
{
va_start(ap, msg);
/* Format the message like a printf message */
bytes_written = vsnprintf(buf, buf_size, msg, ap);
/* It looks like the message has been truncated or an error occurred*/
if (bytes_written < 0)
bytes_written = 0;
else if (bytes_written >= buf_size)
bytes_written = buf_size;
/* The messsage has been formatted correctly */
else;
va_end(ap);
}
/* No valid buffer has been supplied, thus we do not write anything */
else;
/* Return the number of bytes written to the buffer */
return bytes_written;
}
/* Determine if a buffer contains only characters from the base64
* encoding set
*/
int
is_base64(const unsigned char * const buf, const unsigned short int len)
{
unsigned short int i;
int rv = 1;
for(i=0; i<len; i++)
{
if(!(isalnum(buf[i]) || buf[i] == '/' || buf[i] == '+' || buf[i] == '='))
{
rv = 0;
break;
}
}
return rv;
}
void
chop_char(char *str, const char chop)
{
if(str != NULL
&& str[0] != 0x0
&& strlen(str) > 1 /* don't truncate a single-char string */
&& str[strlen(str)-1] == chop)
str[strlen(str)-1] = 0x0;
return;
}
void
chop_newline(char *str)
{
chop_char(str, 0x0a);
return;
}
void chop_spaces(char *str)
{
int i;
if (str != NULL && str[0] != 0x0)
{
for (i=strlen(str)-1; i > 0; i--)
{
if(str[i] != 0x20)
break;
str[i] = 0x0;
}
}
return;
}
static int
add_argv(char **argv_new, int *argc_new, const char *new_arg)
{
int buf_size = 0;
buf_size = strlen(new_arg) + 1;
argv_new[*argc_new] = calloc(1, buf_size);
if(argv_new[*argc_new] == NULL)
return 0;
strlcpy(argv_new[*argc_new], new_arg, buf_size);
*argc_new += 1;
if(*argc_new >= MAX_CMDLINE_ARGS-1)
return 0;
argv_new[*argc_new] = NULL;
return 1;
}
int
strtoargv(const char * const args_str, char **argv_new, int *argc_new)
{
int current_arg_ctr = 0, i;
char arg_tmp[MAX_ARGS_LINE_LEN] = {0};
for (i=0; i < (int)strlen(args_str); i++)
{
if (!isspace(args_str[i]))
{
arg_tmp[current_arg_ctr] = args_str[i];
current_arg_ctr++;
}
else
{
if(current_arg_ctr > 0)
{
arg_tmp[current_arg_ctr] = '\0';
if (add_argv(argv_new, argc_new, arg_tmp) != 1)
{
free_argv(argv_new, argc_new);
return 0;
}
current_arg_ctr = 0;
}
}
}
/* pick up the last argument in the string
*/
if(current_arg_ctr > 0)
{
arg_tmp[current_arg_ctr] = '\0';
if (add_argv(argv_new, argc_new, arg_tmp) != 1)
{
free_argv(argv_new, argc_new);
return 0;
}
}
return 1;
}
void
free_argv(char **argv_new, int *argc_new)
{
int i;
if(argv_new == NULL || *argv_new == NULL)
return;
for (i=0; i < *argc_new; i++)
{
if(argv_new[i] == NULL)
break;
else
free(argv_new[i]);
}
return;
}
#define ASCII_LEN 16
/* Generic hex dump function.
*/
void
hex_dump(const unsigned char *data, const int size)
{
int ln=0, i=0, j=0;
char ascii_str[ASCII_LEN+1] = {0};
for(i=0; i<size; i++)
{
if((i % ASCII_LEN) == 0)
{
printf(" %s\n 0x%.4x: ", ascii_str, i);
memset(ascii_str, 0x0, ASCII_LEN-1);
j = 0;
}
printf("%.2x ", data[i]);
ascii_str[j++] = (data[i] < 0x20 || data[i] > 0x7e) ? '.' : data[i];
if(j == 8)
printf(" ");
}
/* Remainder...
*/
ln = strlen(ascii_str);
if(ln > 0)
{
for(i=0; i < ASCII_LEN-ln; i++)
printf(" ");
if(ln < 8)
printf(" ");
printf(" %s\n\n", ascii_str);
}
return;
}
/**
* @brief Dump a FKO context to a buffer
*
* This function parses a FKO context and decodes each field to dump them to a
* buffer in a comprehensible way.
*
* @param ctx FKO context to dump
* @param dump_buf Buffer where to store the dump of the context
* @param dump_buf_len Number of bytes available in the dump_buf array
*
* @return a FKO error code. FKO_SUCCESS if successful.
*/
int
dump_ctx_to_buffer(fko_ctx_t ctx, char *dump_buf, size_t dump_buf_len)
{
int cp = 0;
int err = FKO_LAST_ERROR;
char *rand_val = NULL;
char *username = NULL;
char *version = NULL;
char *spa_message = NULL;
char *nat_access = NULL;
char *server_auth = NULL;
char *enc_data = NULL;
char *hmac_data = NULL;
char *spa_digest = NULL;
#if HAVE_LIBGPGME
char *gpg_signer = NULL;
char *gpg_recip = NULL;
char *gpg_sig_id = NULL;
unsigned char gpg_sig_verify = 0;
unsigned char gpg_ignore_verify = 0;
char *gpg_sig_fpr = NULL;
char *gpg_home_dir = NULL;
char *gpg_exe = NULL;
int gpg_sigsum = -1;
int gpg_sig_stat = -1;
#endif
char *spa_data = NULL;
char digest_str[24] = {0};
char hmac_str[24] = {0};
char enc_mode_str[FKO_ENCRYPTION_MODE_BUFSIZE] = {0};
time_t timestamp = 0;
short msg_type = -1;
short digest_type = -1;
short hmac_type = -1;
short encryption_type = -1;
int encryption_mode = -1;
int client_timeout = -1;
/* Zero-ed the buffer */
memset(dump_buf, 0, dump_buf_len);
/* Make sure the FKO context is initialized before printing it */
if(!CTX_INITIALIZED(ctx))
err = FKO_ERROR_CTX_NOT_INITIALIZED;
else
{
/* Parse the FKO context and collect data */
RETURN_ON_FKO_ERROR(err, fko_get_rand_value(ctx, &rand_val));
RETURN_ON_FKO_ERROR(err, fko_get_username(ctx, &username));
RETURN_ON_FKO_ERROR(err, fko_get_timestamp(ctx, &timestamp));
RETURN_ON_FKO_ERROR(err, fko_get_version(ctx, &version));
RETURN_ON_FKO_ERROR(err, fko_get_spa_message_type(ctx, &msg_type));
RETURN_ON_FKO_ERROR(err, fko_get_spa_message(ctx, &spa_message));
RETURN_ON_FKO_ERROR(err, fko_get_spa_nat_access(ctx, &nat_access));
RETURN_ON_FKO_ERROR(err, fko_get_spa_server_auth(ctx, &server_auth));
RETURN_ON_FKO_ERROR(err, fko_get_spa_client_timeout(ctx, &client_timeout));
RETURN_ON_FKO_ERROR(err, fko_get_spa_digest_type(ctx, &digest_type));
RETURN_ON_FKO_ERROR(err, fko_get_spa_hmac_type(ctx, &hmac_type));
RETURN_ON_FKO_ERROR(err, fko_get_spa_encryption_type(ctx, &encryption_type));
RETURN_ON_FKO_ERROR(err, fko_get_spa_encryption_mode(ctx, &encryption_mode));
RETURN_ON_FKO_ERROR(err, fko_get_encoded_data(ctx, &enc_data));
RETURN_ON_FKO_ERROR(err, fko_get_spa_hmac(ctx, &hmac_data));
RETURN_ON_FKO_ERROR(err, fko_get_spa_digest(ctx, &spa_digest));
RETURN_ON_FKO_ERROR(err, fko_get_spa_data(ctx, &spa_data));
#if HAVE_LIBGPGME
if(encryption_mode == FKO_ENC_MODE_ASYMMETRIC)
{
/* Populate GPG variables
*/
RETURN_ON_FKO_ERROR(err, fko_get_gpg_signer(ctx, &gpg_signer));
RETURN_ON_FKO_ERROR(err, fko_get_gpg_recipient(ctx, &gpg_recip));
RETURN_ON_FKO_ERROR(err, fko_get_gpg_signature_verify(ctx, &gpg_sig_verify));
RETURN_ON_FKO_ERROR(err, fko_get_gpg_ignore_verify_error(ctx, &gpg_ignore_verify));
RETURN_ON_FKO_ERROR(err, fko_get_gpg_home_dir(ctx, &gpg_home_dir));
RETURN_ON_FKO_ERROR(err, fko_get_gpg_exe(ctx, &gpg_exe));
if(fko_get_gpg_signature_id(ctx, &gpg_sig_id) != FKO_SUCCESS)
gpg_sig_id = NULL;
if(fko_get_gpg_signature_summary(ctx, &gpg_sigsum) != FKO_SUCCESS)
gpg_sigsum = -1;
if(fko_get_gpg_signature_status(ctx, &gpg_sig_stat) != FKO_SUCCESS)
gpg_sig_stat = -1;
if(fko_get_gpg_signature_fpr(ctx, &gpg_sig_fpr) != FKO_SUCCESS)
gpg_sig_fpr = NULL;
}
#endif
/* Convert the digest integer to a string */
if (digest_inttostr(digest_type, digest_str, sizeof(digest_str)) != 0)
return (FKO_ERROR_INVALID_DIGEST_TYPE);
/* Convert the encryption mode integer to a string */
if (enc_mode_inttostr(encryption_mode, enc_mode_str, sizeof(enc_mode_str)) != 0)
return (FKO_ERROR_INVALID_ENCRYPTION_TYPE);
/* Convert the HMAC digest integer to a string if a HMAC message is available */
if (ctx->msg_hmac_len != 0)
{
if (hmac_digest_inttostr(hmac_type, hmac_str, sizeof(hmac_str)) != 0)
return (FKO_ERROR_UNSUPPORTED_HMAC_MODE);
}
/* Fill in the buffer to dump */
cp = append_msg_to_buf(dump_buf, dump_buf_len, "SPA Field Values:\n=================\n");
cp += append_msg_to_buf(dump_buf+cp, dump_buf_len-cp, " Random Value: %s\n", rand_val == NULL ? NULL_STRING : rand_val);
cp += append_msg_to_buf(dump_buf+cp, dump_buf_len-cp, " Username: %s\n", username == NULL ? NULL_STRING : username);
cp += append_msg_to_buf(dump_buf+cp, dump_buf_len-cp, " Timestamp: %u\n", (unsigned int) timestamp);
cp += append_msg_to_buf(dump_buf+cp, dump_buf_len-cp, " FKO Version: %s\n", version == NULL ? NULL_STRING : version);
cp += append_msg_to_buf(dump_buf+cp, dump_buf_len-cp, " Message Type: %i (%s)\n", msg_type, msg_type_inttostr(msg_type));
cp += append_msg_to_buf(dump_buf+cp, dump_buf_len-cp, " Message String: %s\n", spa_message == NULL ? NULL_STRING : spa_message);
cp += append_msg_to_buf(dump_buf+cp, dump_buf_len-cp, " Nat Access: %s\n", nat_access == NULL ? NULL_STRING : nat_access);
cp += append_msg_to_buf(dump_buf+cp, dump_buf_len-cp, " Server Auth: %s\n", server_auth == NULL ? NULL_STRING : server_auth);
cp += append_msg_to_buf(dump_buf+cp, dump_buf_len-cp, " Client Timeout: %u\n", client_timeout);
cp += append_msg_to_buf(dump_buf+cp, dump_buf_len-cp, " Digest Type: %u (%s)\n", digest_type, digest_str);
cp += append_msg_to_buf(dump_buf+cp, dump_buf_len-cp, " HMAC Type: %u (%s)\n", hmac_type, hmac_type == 0 ? "None" : hmac_str);
cp += append_msg_to_buf(dump_buf+cp, dump_buf_len-cp, "Encryption Type: %d (%s)\n", encryption_type, enc_type_inttostr(encryption_type));
cp += append_msg_to_buf(dump_buf+cp, dump_buf_len-cp, "Encryption Mode: %d (%s)\n", encryption_mode, enc_mode_str);
#if HAVE_LIBGPGME
if(encryption_mode == FKO_ENC_MODE_ASYMMETRIC)
{
cp += append_msg_to_buf(dump_buf+cp, dump_buf_len-cp, " GPG signer: %s\n", gpg_signer == NULL ? NULL_STRING : gpg_signer);
cp += append_msg_to_buf(dump_buf+cp, dump_buf_len-cp, " GPG recipient: %s\n", gpg_recip == NULL ? NULL_STRING : gpg_recip);
cp += append_msg_to_buf(dump_buf+cp, dump_buf_len-cp, " GPG sig verify: %s\n", gpg_sig_verify == 0 ? "No" : "Yes");
cp += append_msg_to_buf(dump_buf+cp, dump_buf_len-cp, " GPG ignore sig: %s\n", gpg_ignore_verify == 0 ? "No" : "Yes");
cp += append_msg_to_buf(dump_buf+cp, dump_buf_len-cp, " GPG sig ID: %s\n", gpg_sig_id == NULL ? NULL_STRING : gpg_sig_id);
cp += append_msg_to_buf(dump_buf+cp, dump_buf_len-cp, " GPG sig fpr: %s\n", gpg_sig_fpr == NULL ? NULL_STRING : gpg_sig_fpr);
cp += append_msg_to_buf(dump_buf+cp, dump_buf_len-cp, "GPG sig summary: %d\n", gpg_sigsum);
cp += append_msg_to_buf(dump_buf+cp, dump_buf_len-cp, " GPG sig status: %d\n", gpg_sig_stat);
cp += append_msg_to_buf(dump_buf+cp, dump_buf_len-cp, " GPG home dir: %s\n", gpg_home_dir == NULL ? NULL_STRING : gpg_home_dir);
cp += append_msg_to_buf(dump_buf+cp, dump_buf_len-cp, " GPG exe: %s\n", gpg_exe == NULL ? GPG_EXE : gpg_exe);
}
#endif
cp += append_msg_to_buf(dump_buf+cp, dump_buf_len-cp, " Encoded Data: %s\n", enc_data == NULL ? NULL_STRING : enc_data);
cp += append_msg_to_buf(dump_buf+cp, dump_buf_len-cp, "SPA Data Digest: %s\n", spa_digest == NULL ? NULL_STRING : spa_digest);
cp += append_msg_to_buf(dump_buf+cp, dump_buf_len-cp, " HMAC: %s\n", hmac_data == NULL ? NULL_STRING : hmac_data);
append_msg_to_buf(dump_buf+cp, dump_buf_len-cp, " Final SPA Data: %s\n", spa_data);
err = FKO_SUCCESS;
}
return (err);
}
/**
* @brief Grab the sin address from the sockaddr structure.
*
* This function returns the sin address as a sockaddr_in or sockaddr_in6
* structure according to the family set (ipv4 or ipv6) in the sockaddr
* structure.
*
* @param sa sockaddr strcuture
*
* @return the sin addr if the sa family is AF_INET or the sin6_addr otherwise.
*/
static void *
get_in_addr(struct sockaddr *sa)
{
if (sa->sa_family == AF_INET)
{
return &(((struct sockaddr_in*)sa)->sin_addr);
}
else
{
return &(((struct sockaddr_in6*)sa)->sin6_addr);
}
}
/**
* @brief Resolve a domain name as an IP address.
*
* @param dns_str Name of the host to resolve.
* @param hints Hints to reduce the number of result from getaddrinfo()
* @param ip_str String where to store the resolve ip address
* @param ip_bufsize Number of bytes available in the ip_str buffer
* @param opts Client command line options
*
* @return 0 if successful, 1 if an error occurred.
*/
int
ipv4_resolve(const char *dns_str, char *ip_str)
{
int error; /* Function error return code */
size_t ip_bufsize = MAX_IPV4_STR_LEN;
struct addrinfo hints;
struct addrinfo *result; /* Result of getaddrinfo() */
struct addrinfo *rp; /* Element of the linked list returned by getaddrinfo() */
#if WIN32 && WINVER <= 0x0600
struct sockaddr_in *in;
char *win_ip;
#else
struct sockaddr_in *sai_remote; /* Remote host information as a sockaddr_in structure */
#endif
#if WIN32
WSADATA wsa_data;
error = WSAStartup( MAKEWORD(1,1), &wsa_data );
if( error != 0 )
{
fprintf(stderr, "Winsock initialization error %d", error);
return(error);
}
#endif
memset(&hints, 0 , sizeof(hints));
hints.ai_family = AF_INET;
hints.ai_socktype = SOCK_STREAM;
hints.ai_protocol = IPPROTO_TCP;
/* Try to resolve the host name */
error = getaddrinfo(dns_str, NULL, &hints, &result);
if (error != 0)
fprintf(stderr, "ipv4_resolve() : %s\n", gai_strerror(error));
else
{
error = 1;
/* Go through the linked list of addrinfo structures */
for (rp = result; rp != NULL; rp = rp->ai_next)
{
memset(ip_str, 0, ip_bufsize);
#if WIN32 && WINVER <= 0x0600
/* On older Windows systems (anything before Vista?),
* we use inet_ntoa for now.
*/
in = (struct sockaddr_in*)(rp->ai_addr);
win_ip = inet_ntoa(in->sin_addr);
if (win_ip != NULL && (strlcpy(ip_str, win_ip, ip_bufsize) > 0))
#else
sai_remote = (struct sockaddr_in *)get_in_addr((struct sockaddr *)(rp->ai_addr));
if (inet_ntop(rp->ai_family, sai_remote, ip_str, ip_bufsize) != NULL)
#endif
{
error = 0;
break;
}
}
/* Free our result from getaddrinfo() */
freeaddrinfo(result);
}
#if WIN32
WSACleanup();
#endif
return error;
}
int
count_characters(const char *str, const char match, int len)
{
int i, count = 0;
for (i=0; i < len; i++) {
if (str[i] == match)
count++;
if (str[i] == '\0')
return count;
}
return count;
}
#ifdef HAVE_C_UNIT_TESTS
DECLARE_UTEST(test_count_characters, "test the count_characters function")
{
char test_str[32];
strcpy(test_str, "abcd");
CU_ASSERT(count_characters(test_str, 'a', 4) == 1);
strcpy(test_str, "aacd");
CU_ASSERT(count_characters(test_str, 'a', 4) == 2);
strcpy(test_str, "a,b,c,d,");
CU_ASSERT(count_characters(test_str, ',', 4) == 2);
strcpy(test_str, "a,b,c,d,");
CU_ASSERT(count_characters(test_str, ',', 8) == 4);
strcpy(test_str, "aaaa");
CU_ASSERT(count_characters(test_str, 'a', 3) == 3);
}
int register_utils_test(void)
{
ts_init(&TEST_SUITE(utils_test), TEST_SUITE_DESCR(utils_test), NULL, NULL);
ts_add_utest(&TEST_SUITE(utils_test), UTEST_FCT(test_count_characters), UTEST_DESCR(test_count_characters));
return register_ts(&TEST_SUITE(utils_test));
}
#endif
/***EOF***/