fwknop/lib/cipher_funcs.c
Michael Rash bfdbb8f260 Updated authorship and copyright information
This commit updates all authorship and copyright information to include a
standard header that references the AUTHORS and CREDITS file. This standard
header was written by the Debian legal team at the request of Franck Joncourt.
2014-03-04 17:53:10 -05:00

413 lines
11 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
*****************************************************************************
*
* File: cipher_funcs.c
*
* Purpose: Cipher functions used by fwknop
*
* Fwknop is developed primarily by the people listed in the file 'AUTHORS'.
* Copyright (C) 20092014 fwknop developers and contributors. For a full
* list of contributors, see the file 'CREDITS'.
*
* License (GNU General Public License):
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
* USA
*
*****************************************************************************
*/
#include <stdio.h>
#include <string.h>
#ifdef WIN32
#include <sys/timeb.h>
#include <time.h>
#include <stdlib.h>
#else
#include <sys/time.h>
#endif
#include "fko_common.h"
#include "cipher_funcs.h"
#include "digest.h"
#ifndef WIN32
#ifndef RAND_FILE
#define RAND_FILE "/dev/urandom"
#endif
#endif
/* Get random data.
*/
void
get_random_data(unsigned char *data, const size_t len)
{
uint32_t i;
#ifdef WIN32
int rnum;
struct _timeb tb;
_ftime_s(&tb);
srand((uint32_t)(tb.time*1000)+tb.millitm);
for(i=0; i<len; i++)
{
rnum = rand();
*(data+i) = rnum % 0xff;
}
#else
FILE *rfd;
struct timeval tv;
int do_time = 0;
size_t amt_read;
/* Attempt to read seed data from /dev/urandom. If that does not
* work, then fall back to a time-based method (less secure, but
* probably more portable).
*/
if((rfd = fopen(RAND_FILE, "r")) == NULL)
{
do_time = 1;
}
else
{
/* Read seed from /dev/urandom
*/
amt_read = fread(data, len, 1, rfd);
fclose(rfd);
if (amt_read != 1)
do_time = 1;
}
if (do_time)
{
/* Seed based on time (current usecs).
*/
gettimeofday(&tv, NULL);
srand(tv.tv_usec);
for(i=0; i<len; i++)
*(data+i) = rand() % 0xff;
}
#endif
}
/*** These are Rijndael-specific functions ***/
/* Rijndael function to generate initial salt and initialization vector
* (iv). This is is done to be compatible with the data produced via OpenSSL
*/
static void
rij_salt_and_iv(RIJNDAEL_context *ctx, const char *key,
const int key_len, const unsigned char *data, const int mode_flag)
{
char pw_buf[RIJNDAEL_MAX_KEYSIZE] = {0};
unsigned char tmp_buf[MD5_DIGEST_LEN+RIJNDAEL_MAX_KEYSIZE+RIJNDAEL_BLOCKSIZE] = {0};
unsigned char kiv_buf[RIJNDAEL_MAX_KEYSIZE+RIJNDAEL_BLOCKSIZE] = {0}; /* Key and IV buffer */
unsigned char md5_buf[MD5_DIGEST_LEN] = {0}; /* Buffer for computed md5 hash */
int final_key_len = 0;
size_t kiv_len = 0;
if(mode_flag == FKO_ENC_MODE_CBC_LEGACY_IV)
{
/* Pad the pw with '0' chars up to the minimum Rijndael key size.
*
* This maintains compatibility with the old perl code if absolutely
* necessary in some scenarios, but is not recommended to use since it
* breaks compatibility with how OpenSSL implements AES and introduces
* other problems. This code will be removed altogether in a future
* version of fwknop.
*/
if(key_len < RIJNDAEL_MIN_KEYSIZE)
{
memcpy(pw_buf, key, key_len);
memset(pw_buf+key_len, '0', RIJNDAEL_MIN_KEYSIZE - key_len);
final_key_len = RIJNDAEL_MIN_KEYSIZE;
}
else
{
memcpy(pw_buf, key, key_len);
final_key_len = key_len;
}
}
else
{
memcpy(pw_buf, key, key_len);
final_key_len = key_len;
}
/* If we are decrypting, data will contain the salt. Otherwise,
* for encryption, we generate a random salt.
*/
if(data != NULL)
{
/* Pull the salt from the data
*/
memcpy(ctx->salt, (data+SALT_LEN), SALT_LEN);
}
else
{
/* Generate a random 8-byte salt.
*/
get_random_data(ctx->salt, SALT_LEN);
}
/* Now generate the key and initialization vector.
* (again it is the perl Crypt::CBC way, with a touch of
* fwknop).
*/
memcpy(tmp_buf+MD5_DIGEST_LEN, pw_buf, final_key_len);
memcpy(tmp_buf+MD5_DIGEST_LEN+final_key_len, ctx->salt, SALT_LEN);
while(kiv_len < sizeof(kiv_buf))
{
if(kiv_len == 0)
md5(md5_buf, tmp_buf+MD5_DIGEST_LEN, final_key_len+SALT_LEN);
else
md5(md5_buf, tmp_buf, MD5_DIGEST_LEN+final_key_len+SALT_LEN);
memcpy(tmp_buf, md5_buf, MD5_DIGEST_LEN);
memcpy(kiv_buf + kiv_len, md5_buf, MD5_DIGEST_LEN);
kiv_len += MD5_DIGEST_LEN;
}
memcpy(ctx->key, kiv_buf, RIJNDAEL_MAX_KEYSIZE);
memcpy(ctx->iv, kiv_buf+RIJNDAEL_MAX_KEYSIZE, RIJNDAEL_BLOCKSIZE);
}
/* Initialization entry point.
*/
static void
rijndael_init(RIJNDAEL_context *ctx, const char *key,
const int key_len, const unsigned char *data,
int encryption_mode)
{
/* The default is Rijndael in CBC mode
*/
if(encryption_mode == FKO_ENC_MODE_CBC
|| encryption_mode == FKO_ENC_MODE_CBC_LEGACY_IV)
ctx->mode = MODE_CBC;
else if(encryption_mode == FKO_ENC_MODE_CTR)
ctx->mode = MODE_CTR;
else if(encryption_mode == FKO_ENC_MODE_PCBC)
ctx->mode = MODE_PCBC;
else if(encryption_mode == FKO_ENC_MODE_OFB)
ctx->mode = MODE_OFB;
else if(encryption_mode == FKO_ENC_MODE_CFB)
ctx->mode = MODE_CFB;
else if(encryption_mode == FKO_ENC_MODE_ECB)
ctx->mode = MODE_ECB;
else /* shouldn't get this far */
ctx->mode = encryption_mode;
/* Generate the salt and initialization vector.
*/
rij_salt_and_iv(ctx, key, key_len, data, encryption_mode);
/* Intialize our Rijndael context.
*/
rijndael_setup(ctx, RIJNDAEL_MAX_KEYSIZE, ctx->key);
}
/* Take a chunk of data, encrypt it in the same way OpenSSL would
* (with a default of AES in CBC mode).
*/
size_t
rij_encrypt(unsigned char *in, size_t in_len,
const char *key, const int key_len,
unsigned char *out, int encryption_mode)
{
RIJNDAEL_context ctx;
int i, pad_val;
unsigned char *ondx = out;
rijndael_init(&ctx, key, key_len, NULL, encryption_mode);
/* Prepend the salt to the ciphertext...
*/
memcpy(ondx, "Salted__", SALT_LEN);
ondx+=SALT_LEN;
memcpy(ondx, ctx.salt, SALT_LEN);
ondx+=SALT_LEN;
/* Add padding to the original plaintext to ensure that it is a
* multiple of the Rijndael block size
*/
pad_val = RIJNDAEL_BLOCKSIZE - (in_len % RIJNDAEL_BLOCKSIZE);
for (i = (int)in_len; i < ((int)in_len+pad_val); i++)
in[i] = pad_val;
block_encrypt(&ctx, in, in_len+pad_val, ondx, ctx.iv);
ondx += in_len+pad_val;
zero_buf((char *)ctx.key, RIJNDAEL_MAX_KEYSIZE);
zero_buf((char *)ctx.iv, RIJNDAEL_BLOCKSIZE);
zero_buf((char *)ctx.salt, SALT_LEN);
return(ondx - out);
}
/* Decrypt the given data.
*/
size_t
rij_decrypt(unsigned char *in, size_t in_len,
const char *key, const int key_len,
unsigned char *out, int encryption_mode)
{
RIJNDAEL_context ctx;
int i, pad_val, pad_err = 0;
unsigned char *pad_s;
unsigned char *ondx = out;
if(in == NULL || key == NULL || out == NULL)
return 0;
rijndael_init(&ctx, key, key_len, in, encryption_mode);
/* Remove the first block since it contains the salt (it was consumed
* by the rijndael_init() function above).
*/
in_len -= RIJNDAEL_BLOCKSIZE;
memmove(in, in+RIJNDAEL_BLOCKSIZE, in_len);
block_decrypt(&ctx, in, in_len, out, ctx.iv);
ondx += in_len;
/* Find and remove padding.
*/
pad_val = *(ondx-1);
if(pad_val >= 0 && pad_val <= RIJNDAEL_BLOCKSIZE)
{
pad_s = ondx - pad_val;
for(i=0; i < (ondx-pad_s); i++)
{
if(*(pad_s+i) != pad_val)
pad_err++;
}
if(pad_err == 0)
ondx -= pad_val;
}
*ondx = '\0';
zero_buf((char *)ctx.key, RIJNDAEL_MAX_KEYSIZE);
zero_buf((char *)ctx.iv, RIJNDAEL_BLOCKSIZE);
zero_buf((char *)ctx.salt, SALT_LEN);
return(ondx - out);
}
/* See if we need to add the "Salted__" string to the front of the
* encrypted data.
*/
int
add_salted_str(fko_ctx_t ctx)
{
char *tbuf;
/* We only add the base64 encoded salt to data that is already base64
* encoded
*/
if(is_base64((unsigned char *)ctx->encrypted_msg,
ctx->encrypted_msg_len) == 0)
return(FKO_ERROR_INVALID_DATA_ENCODE_NOTBASE64);
if(constant_runtime_cmp(ctx->encrypted_msg,
B64_RIJNDAEL_SALT, B64_RIJNDAEL_SALT_STR_LEN) != 0)
{
/* We need to realloc space for the salt.
*/
tbuf = realloc(ctx->encrypted_msg, ctx->encrypted_msg_len
+ B64_RIJNDAEL_SALT_STR_LEN+1);
if(tbuf == NULL)
return(FKO_ERROR_MEMORY_ALLOCATION);
memmove(tbuf+B64_RIJNDAEL_SALT_STR_LEN, tbuf, ctx->encrypted_msg_len);
ctx->encrypted_msg = memcpy(tbuf,
B64_RIJNDAEL_SALT, B64_RIJNDAEL_SALT_STR_LEN);
/* Adjust the encoded msg len for added SALT value and Make sure we
* are still a properly NULL-terminated string (Ubuntu was one system
* for which this was an issue).
*/
ctx->encrypted_msg_len += B64_RIJNDAEL_SALT_STR_LEN;
tbuf[ctx->encrypted_msg_len] = '\0';
ctx->added_salted_str = 1;
}
return(FKO_SUCCESS);
}
/* See if we need to add the "hQ" string to the front of the
* encrypted data.
*/
int
add_gpg_prefix(fko_ctx_t ctx)
{
char *tbuf;
/* We only add the base64 encoded salt to data that is already base64
* encoded
*/
if(is_base64((unsigned char *)ctx->encrypted_msg,
ctx->encrypted_msg_len) == 0)
return(FKO_ERROR_INVALID_DATA_ENCODE_NOTBASE64);
if(constant_runtime_cmp(ctx->encrypted_msg,
B64_GPG_PREFIX, B64_GPG_PREFIX_STR_LEN) != 0)
{
/* We need to realloc space for the prefix.
*/
tbuf = realloc(ctx->encrypted_msg, ctx->encrypted_msg_len
+ B64_GPG_PREFIX_STR_LEN+1);
if(tbuf == NULL)
return(FKO_ERROR_MEMORY_ALLOCATION);
memmove(tbuf+B64_GPG_PREFIX_STR_LEN, tbuf, ctx->encrypted_msg_len);
ctx->encrypted_msg = memcpy(tbuf,
B64_GPG_PREFIX, B64_GPG_PREFIX_STR_LEN);
/* Adjust the encoded msg len for added SALT value and Make sure we
* are still a properly NULL-terminated string (Ubuntu was one system
* for which this was an issue).
*/
ctx->encrypted_msg_len += B64_GPG_PREFIX_STR_LEN;
tbuf[ctx->encrypted_msg_len] = '\0';
ctx->added_gpg_prefix = 1;
}
return(FKO_SUCCESS);
}
/***EOF***/