290 lines
9.7 KiB
C
290 lines
9.7 KiB
C
/**
|
|
* \file lib/sha1.c
|
|
*
|
|
* \brief Implementation of the SHA1 message-digest algorithm for libfwknop.
|
|
*/
|
|
|
|
/* NIST Secure Hash Algorithm
|
|
* Heavily modified by Uwe Hollerbach <uh@alumni.caltech edu>
|
|
* from Peter C. Gutmann's implementation as found in
|
|
* Applied Cryptography by Bruce Schneier
|
|
* Further modifications to include the "UNRAVEL" stuff, below
|
|
*
|
|
* This code is in the public domain
|
|
*
|
|
*****************************************************************************
|
|
*/
|
|
#include "sha1.h"
|
|
#include "fko_common.h"
|
|
|
|
/* SHA f()-functions */
|
|
#define f1(x,y,z) ((x & y) | (~x & z))
|
|
#define f2(x,y,z) (x ^ y ^ z)
|
|
#define f3(x,y,z) ((x & y) | (x & z) | (y & z))
|
|
#define f4(x,y,z) (x ^ y ^ z)
|
|
|
|
/* SHA constants */
|
|
#define CONST1 0x5a827999L
|
|
#define CONST2 0x6ed9eba1L
|
|
#define CONST3 0x8f1bbcdcL
|
|
#define CONST4 0xca62c1d6L
|
|
|
|
/* truncate to 32 bits -- should be a null op on 32-bit machines */
|
|
#define T32(x) ((x) & 0xffffffffL)
|
|
|
|
/* 32-bit rotate */
|
|
#define R32(x,n) T32(((x << n) | (x >> (32 - n))))
|
|
|
|
/* the generic case, for when the overall rotation is not unraveled */
|
|
#define FG(n) \
|
|
T = T32(R32(A,5) + f##n(B,C,D) + E + *WP++ + CONST##n); \
|
|
E = D; D = C; C = R32(B,30); B = A; A = T
|
|
|
|
/* specific cases, for when the overall rotation is unraveled */
|
|
#define FA(n) \
|
|
T = T32(R32(A,5) + f##n(B,C,D) + E + *WP++ + CONST##n); B = R32(B,30)
|
|
|
|
#define FB(n) \
|
|
E = T32(R32(T,5) + f##n(A,B,C) + D + *WP++ + CONST##n); A = R32(A,30)
|
|
|
|
#define FC(n) \
|
|
D = T32(R32(E,5) + f##n(T,A,B) + C + *WP++ + CONST##n); T = R32(T,30)
|
|
|
|
#define FD(n) \
|
|
C = T32(R32(D,5) + f##n(E,T,A) + B + *WP++ + CONST##n); E = R32(E,30)
|
|
|
|
#define FE(n) \
|
|
B = T32(R32(C,5) + f##n(D,E,T) + A + *WP++ + CONST##n); D = R32(D,30)
|
|
|
|
#define FT(n) \
|
|
A = T32(R32(B,5) + f##n(C,D,E) + T + *WP++ + CONST##n); C = R32(C,30)
|
|
|
|
|
|
void
|
|
sha1_transform(SHA1_INFO *sha1_info)
|
|
{
|
|
int i;
|
|
uint8_t *dp;
|
|
uint32_t T, A, B, C, D, E, W[80], *WP;
|
|
|
|
dp = sha1_info->data;
|
|
|
|
#undef SWAP_DONE
|
|
|
|
#if BYTEORDER == 1234
|
|
#define SWAP_DONE
|
|
for (i = 0; i < 16; ++i) {
|
|
T = *((uint32_t *) dp);
|
|
dp += 4;
|
|
W[i] =
|
|
((T << 24) & 0xff000000) |
|
|
((T << 8) & 0x00ff0000) |
|
|
((T >> 8) & 0x0000ff00) | ((T >> 24) & 0x000000ff);
|
|
}
|
|
#endif
|
|
|
|
#if BYTEORDER == 4321
|
|
#define SWAP_DONE
|
|
for (i = 0; i < 16; ++i) {
|
|
T = *((uint32_t *) dp);
|
|
dp += 4;
|
|
W[i] = TRUNC32(T);
|
|
}
|
|
#endif
|
|
|
|
#if BYTEORDER == 12345678
|
|
#define SWAP_DONE
|
|
for (i = 0; i < 16; i += 2) {
|
|
T = *((uint32_t *) dp);
|
|
dp += 8;
|
|
W[i] = ((T << 24) & 0xff000000) | ((T << 8) & 0x00ff0000) |
|
|
((T >> 8) & 0x0000ff00) | ((T >> 24) & 0x000000ff);
|
|
T >>= 32;
|
|
W[i+1] = ((T << 24) & 0xff000000) | ((T << 8) & 0x00ff0000) |
|
|
((T >> 8) & 0x0000ff00) | ((T >> 24) & 0x000000ff);
|
|
}
|
|
#endif
|
|
|
|
#if BYTEORDER == 87654321
|
|
#define SWAP_DONE
|
|
for (i = 0; i < 16; i += 2) {
|
|
T = *((uint32_t *) dp);
|
|
dp += 8;
|
|
W[i] = TRUNC32(T >> 32);
|
|
W[i+1] = TRUNC32(T);
|
|
}
|
|
#endif
|
|
|
|
#ifndef SWAP_DONE
|
|
#define SWAP_DONE
|
|
for (i = 0; i < 16; ++i) {
|
|
T = *((uint32_t *) dp);
|
|
dp += 4;
|
|
W[i] = TRUNC32(T);
|
|
}
|
|
#ifndef WIN32
|
|
#warning Undetermined or unsupported Byte Order... We will try LITTLE_ENDIAN
|
|
#endif
|
|
#endif /* SWAP_DONE */
|
|
|
|
for (i = 16; i < 80; ++i) {
|
|
W[i] = W[i-3] ^ W[i-8] ^ W[i-14] ^ W[i-16];
|
|
W[i] = R32(W[i], 1);
|
|
}
|
|
A = sha1_info->digest[0];
|
|
B = sha1_info->digest[1];
|
|
C = sha1_info->digest[2];
|
|
D = sha1_info->digest[3];
|
|
E = sha1_info->digest[4];
|
|
WP = W;
|
|
#ifdef UNRAVEL
|
|
FA(1); FB(1); FC(1); FD(1); FE(1); FT(1); FA(1); FB(1); FC(1); FD(1);
|
|
FE(1); FT(1); FA(1); FB(1); FC(1); FD(1); FE(1); FT(1); FA(1); FB(1);
|
|
FC(2); FD(2); FE(2); FT(2); FA(2); FB(2); FC(2); FD(2); FE(2); FT(2);
|
|
FA(2); FB(2); FC(2); FD(2); FE(2); FT(2); FA(2); FB(2); FC(2); FD(2);
|
|
FE(3); FT(3); FA(3); FB(3); FC(3); FD(3); FE(3); FT(3); FA(3); FB(3);
|
|
FC(3); FD(3); FE(3); FT(3); FA(3); FB(3); FC(3); FD(3); FE(3); FT(3);
|
|
FA(4); FB(4); FC(4); FD(4); FE(4); FT(4); FA(4); FB(4); FC(4); FD(4);
|
|
FE(4); FT(4); FA(4); FB(4); FC(4); FD(4); FE(4); FT(4); FA(4); FB(4);
|
|
sha1_info->digest[0] = T32(sha1_info->digest[0] + E);
|
|
sha1_info->digest[1] = T32(sha1_info->digest[1] + T);
|
|
sha1_info->digest[2] = T32(sha1_info->digest[2] + A);
|
|
sha1_info->digest[3] = T32(sha1_info->digest[3] + B);
|
|
sha1_info->digest[4] = T32(sha1_info->digest[4] + C);
|
|
#else /* !UNRAVEL */
|
|
#ifdef UNROLL_LOOPS
|
|
FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1);
|
|
FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1);
|
|
FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2);
|
|
FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2);
|
|
FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3);
|
|
FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3);
|
|
FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4);
|
|
FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4);
|
|
#else /* !UNROLL_LOOPS */
|
|
for (i = 0; i < 20; ++i) { FG(1); }
|
|
for (i = 20; i < 40; ++i) { FG(2); }
|
|
for (i = 40; i < 60; ++i) { FG(3); }
|
|
for (i = 60; i < 80; ++i) { FG(4); }
|
|
#endif /* !UNROLL_LOOPS */
|
|
sha1_info->digest[0] = T32(sha1_info->digest[0] + A);
|
|
sha1_info->digest[1] = T32(sha1_info->digest[1] + B);
|
|
sha1_info->digest[2] = T32(sha1_info->digest[2] + C);
|
|
sha1_info->digest[3] = T32(sha1_info->digest[3] + D);
|
|
sha1_info->digest[4] = T32(sha1_info->digest[4] + E);
|
|
#endif /* !UNRAVEL */
|
|
}
|
|
|
|
/* initialize the SHA digest */
|
|
|
|
void
|
|
sha1_init(SHA1_INFO *sha1_info)
|
|
{
|
|
sha1_info->digest[0] = 0x67452301L;
|
|
sha1_info->digest[1] = 0xefcdab89L;
|
|
sha1_info->digest[2] = 0x98badcfeL;
|
|
sha1_info->digest[3] = 0x10325476L;
|
|
sha1_info->digest[4] = 0xc3d2e1f0L;
|
|
sha1_info->count_lo = 0L;
|
|
sha1_info->count_hi = 0L;
|
|
sha1_info->local = 0;
|
|
}
|
|
|
|
/* update the SHA digest */
|
|
|
|
void
|
|
sha1_update(SHA1_INFO *sha1_info, uint8_t *buffer, int count)
|
|
{
|
|
int i;
|
|
uint32_t clo;
|
|
|
|
clo = T32(sha1_info->count_lo + ((uint32_t) count << 3));
|
|
if (clo < sha1_info->count_lo) {
|
|
++sha1_info->count_hi;
|
|
}
|
|
sha1_info->count_lo = clo;
|
|
sha1_info->count_hi += (uint32_t) count >> 29;
|
|
if (sha1_info->local) {
|
|
i = SHA1_BLOCKSIZE - sha1_info->local;
|
|
if (i > count) {
|
|
i = count;
|
|
}
|
|
memcpy(((uint8_t *) sha1_info->data) + sha1_info->local, buffer, i);
|
|
count -= i;
|
|
buffer += i;
|
|
sha1_info->local += i;
|
|
if (sha1_info->local == SHA1_BLOCKSIZE) {
|
|
sha1_transform(sha1_info);
|
|
} else {
|
|
return;
|
|
}
|
|
}
|
|
while (count >= SHA1_BLOCKSIZE) {
|
|
memcpy(sha1_info->data, buffer, SHA1_BLOCKSIZE);
|
|
buffer += SHA1_BLOCKSIZE;
|
|
count -= SHA1_BLOCKSIZE;
|
|
sha1_transform(sha1_info);
|
|
}
|
|
memcpy(sha1_info->data, buffer, count);
|
|
sha1_info->local = count;
|
|
}
|
|
|
|
|
|
void
|
|
sha1_transform_and_copy(unsigned char digest[20], SHA1_INFO *sha1_info)
|
|
{
|
|
sha1_transform(sha1_info);
|
|
digest[ 0] = (unsigned char) ((sha1_info->digest[0] >> 24) & 0xff);
|
|
digest[ 1] = (unsigned char) ((sha1_info->digest[0] >> 16) & 0xff);
|
|
digest[ 2] = (unsigned char) ((sha1_info->digest[0] >> 8) & 0xff);
|
|
digest[ 3] = (unsigned char) ((sha1_info->digest[0] ) & 0xff);
|
|
digest[ 4] = (unsigned char) ((sha1_info->digest[1] >> 24) & 0xff);
|
|
digest[ 5] = (unsigned char) ((sha1_info->digest[1] >> 16) & 0xff);
|
|
digest[ 6] = (unsigned char) ((sha1_info->digest[1] >> 8) & 0xff);
|
|
digest[ 7] = (unsigned char) ((sha1_info->digest[1] ) & 0xff);
|
|
digest[ 8] = (unsigned char) ((sha1_info->digest[2] >> 24) & 0xff);
|
|
digest[ 9] = (unsigned char) ((sha1_info->digest[2] >> 16) & 0xff);
|
|
digest[10] = (unsigned char) ((sha1_info->digest[2] >> 8) & 0xff);
|
|
digest[11] = (unsigned char) ((sha1_info->digest[2] ) & 0xff);
|
|
digest[12] = (unsigned char) ((sha1_info->digest[3] >> 24) & 0xff);
|
|
digest[13] = (unsigned char) ((sha1_info->digest[3] >> 16) & 0xff);
|
|
digest[14] = (unsigned char) ((sha1_info->digest[3] >> 8) & 0xff);
|
|
digest[15] = (unsigned char) ((sha1_info->digest[3] ) & 0xff);
|
|
digest[16] = (unsigned char) ((sha1_info->digest[4] >> 24) & 0xff);
|
|
digest[17] = (unsigned char) ((sha1_info->digest[4] >> 16) & 0xff);
|
|
digest[18] = (unsigned char) ((sha1_info->digest[4] >> 8) & 0xff);
|
|
digest[19] = (unsigned char) ((sha1_info->digest[4] ) & 0xff);
|
|
}
|
|
|
|
/* finish computing the SHA digest */
|
|
void
|
|
sha1_final(uint8_t digest[20], SHA1_INFO *sha1_info)
|
|
{
|
|
int count;
|
|
uint32_t lo_bit_count, hi_bit_count;
|
|
|
|
lo_bit_count = sha1_info->count_lo;
|
|
hi_bit_count = sha1_info->count_hi;
|
|
count = (int) ((lo_bit_count >> 3) & 0x3f);
|
|
((uint8_t *) sha1_info->data)[count++] = 0x80;
|
|
if (count > SHA1_BLOCKSIZE - 8) {
|
|
memset(((uint8_t *) sha1_info->data) + count, 0, SHA1_BLOCKSIZE - count);
|
|
sha1_transform(sha1_info);
|
|
memset((uint8_t *) sha1_info->data, 0, SHA1_BLOCKSIZE - 8);
|
|
} else {
|
|
memset(((uint8_t *) sha1_info->data) + count, 0,
|
|
SHA1_BLOCKSIZE - 8 - count);
|
|
}
|
|
sha1_info->data[56] = (uint8_t)((hi_bit_count >> 24) & 0xff);
|
|
sha1_info->data[57] = (uint8_t)((hi_bit_count >> 16) & 0xff);
|
|
sha1_info->data[58] = (uint8_t)((hi_bit_count >> 8) & 0xff);
|
|
sha1_info->data[59] = (uint8_t)((hi_bit_count >> 0) & 0xff);
|
|
sha1_info->data[60] = (uint8_t)((lo_bit_count >> 24) & 0xff);
|
|
sha1_info->data[61] = (uint8_t)((lo_bit_count >> 16) & 0xff);
|
|
sha1_info->data[62] = (uint8_t)((lo_bit_count >> 8) & 0xff);
|
|
sha1_info->data[63] = (uint8_t)((lo_bit_count >> 0) & 0xff);
|
|
sha1_transform_and_copy(digest, sha1_info);
|
|
}
|
|
|
|
/***EOF***/
|