fwknop/lib/fko_hmac.c
Michael Rash 6706c53902 [libfko] HMAC comparison timing bug fix
Ryman reported a timing attack bug in the HMAC comparison operation (#85) and
suggested a fix derived from YaSSL:
http://www.mail-archive.com/debian-bugs-rc@lists.debian.org/msg320402.html
2013-06-01 09:09:17 -04:00

314 lines
8.1 KiB
C

/*
*****************************************************************************
*
* File: fko_hmac.c
*
* Author: Michael Rash
*
* Purpose: Provide HMAC support to SPA communications
*
* Copyright 2012 Michael Rash (mbr@cipherdyne.org)
*
* License (GNU Public License):
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
* USA
*
*****************************************************************************
*/
#include "fko_common.h"
#include "fko.h"
#include "cipher_funcs.h"
#include "hmac.h"
#include "base64.h"
/* Compare all bytes with constant run time regardless of
* input characteristics (i.e. don't return early if a difference
* is found before comparing all bytes). This code was adapted
* from YaSSL which is GPLv2 after a timing bug was reported by
* Ryman through github (#85)
*/
static int
constant_runtime_compare(const char *a, const char *b, int len)
{
int good = 0;
int bad = 0;
int i;
for(i=0; i < len; i++) {
if (a[i] == b[i])
good++;
else
bad++;
}
if (good == len)
return 0;
else
return 0 - bad;
}
int fko_verify_hmac(fko_ctx_t ctx,
const char * const hmac_key, const int hmac_key_len)
{
char *hmac_digest_from_data = NULL;
char *tbuf = NULL;
int res = FKO_SUCCESS;
int hmac_b64_digest_len = 0;
/* Must be initialized
*/
if(!CTX_INITIALIZED(ctx))
return(FKO_ERROR_CTX_NOT_INITIALIZED);
if (! is_valid_encoded_msg_len(ctx->encrypted_msg_len))
return(FKO_ERROR_INVALID_DATA);
if(hmac_key_len > MAX_DIGEST_BLOCK_LEN)
return(FKO_ERROR_INVALID_HMAC_KEY_LEN);
if(ctx->hmac_type == FKO_HMAC_MD5)
hmac_b64_digest_len = MD5_B64_LEN;
else if(ctx->hmac_type == FKO_HMAC_SHA1)
hmac_b64_digest_len = SHA1_B64_LEN;
else if(ctx->hmac_type == FKO_HMAC_SHA256)
hmac_b64_digest_len = SHA256_B64_LEN;
else if(ctx->hmac_type == FKO_HMAC_SHA384)
hmac_b64_digest_len = SHA384_B64_LEN;
else if(ctx->hmac_type == FKO_HMAC_SHA512)
hmac_b64_digest_len = SHA512_B64_LEN;
else
return(FKO_ERROR_UNSUPPORTED_HMAC_MODE);
if((ctx->encrypted_msg_len - hmac_b64_digest_len)
< MIN_SPA_ENCODED_MSG_SIZE)
return(FKO_ERROR_INVALID_DATA);
/* Get digest value
*/
hmac_digest_from_data = strndup((ctx->encrypted_msg
+ ctx->encrypted_msg_len - hmac_b64_digest_len),
hmac_b64_digest_len);
if(hmac_digest_from_data == NULL)
return(FKO_ERROR_MEMORY_ALLOCATION);
/* Now we chop the HMAC digest off of the encrypted msg
*/
tbuf = strndup(ctx->encrypted_msg,
ctx->encrypted_msg_len - hmac_b64_digest_len);
if(tbuf == NULL)
{
free(hmac_digest_from_data);
return(FKO_ERROR_MEMORY_ALLOCATION);
}
free(ctx->encrypted_msg);
ctx->encrypted_msg = tbuf;
ctx->encrypted_msg_len -= hmac_b64_digest_len;
if(ctx->encryption_mode == FKO_ENC_MODE_ASYMMETRIC)
{
/* See if we need to add the "hQ" string to the front of the
* encrypted data.
*/
if(! ctx->added_gpg_prefix)
{
res = add_gpg_prefix(ctx);
}
}
else
{
/* See if we need to add the "Salted__" string to the front of the
* encrypted data.
*/
if(! ctx->added_salted_str)
{
res = add_salted_str(ctx);
}
}
if (res != FKO_SUCCESS)
{
free(hmac_digest_from_data);
return(res);
}
/* Calculate the HMAC from the encrypted data and then
* compare
*/
res = fko_set_spa_hmac_type(ctx, ctx->hmac_type);
if(res == FKO_SUCCESS)
{
res = fko_set_spa_hmac(ctx, hmac_key, hmac_key_len);
if(res == FKO_SUCCESS)
{
if(constant_runtime_compare(hmac_digest_from_data,
ctx->msg_hmac, hmac_b64_digest_len) != 0)
{
res = FKO_ERROR_INVALID_DATA;
}
}
}
free(hmac_digest_from_data);
return(res);
}
/* Return the fko HMAC data
*/
int
fko_get_spa_hmac(fko_ctx_t ctx, char **hmac_data)
{
/* Must be initialized
*/
if(!CTX_INITIALIZED(ctx))
return(FKO_ERROR_CTX_NOT_INITIALIZED);
*hmac_data = ctx->msg_hmac;
return(FKO_SUCCESS);
}
/* Set the HMAC type
*/
int
fko_set_spa_hmac_type(fko_ctx_t ctx, const short hmac_type)
{
/* Must be initialized
*/
if(!CTX_INITIALIZED(ctx))
return(FKO_ERROR_CTX_NOT_INITIALIZED);
if(hmac_type < 0 || hmac_type >= FKO_LAST_HMAC_MODE)
return(FKO_ERROR_INVALID_DATA);
ctx->hmac_type = hmac_type;
ctx->state |= FKO_HMAC_MODE_MODIFIED;
return(FKO_SUCCESS);
}
/* Return the fko HMAC type
*/
int
fko_get_spa_hmac_type(fko_ctx_t ctx, short *hmac_type)
{
/* Must be initialized
*/
if(!CTX_INITIALIZED(ctx))
return(FKO_ERROR_CTX_NOT_INITIALIZED);
*hmac_type = ctx->hmac_type;
return(FKO_SUCCESS);
}
int fko_set_spa_hmac(fko_ctx_t ctx,
const char * const hmac_key, const int hmac_key_len)
{
unsigned char hmac[SHA512_DIGEST_STR_LEN] = {0};
char *hmac_base64 = NULL;
int hmac_digest_str_len = 0;
int hmac_digest_len = 0;
/* Must be initialized
*/
if(!CTX_INITIALIZED(ctx))
return(FKO_ERROR_CTX_NOT_INITIALIZED);
if(hmac_key_len > MAX_DIGEST_BLOCK_LEN)
return(FKO_ERROR_INVALID_HMAC_KEY_LEN);
if(ctx->hmac_type == FKO_HMAC_MD5)
{
hmac_md5(ctx->encrypted_msg,
ctx->encrypted_msg_len, hmac, hmac_key, hmac_key_len);
hmac_digest_len = MD5_DIGEST_LEN;
hmac_digest_str_len = MD5_DIGEST_STR_LEN;
}
else if(ctx->hmac_type == FKO_HMAC_SHA1)
{
hmac_sha1(ctx->encrypted_msg,
ctx->encrypted_msg_len, hmac, hmac_key, hmac_key_len);
hmac_digest_len = SHA1_DIGEST_LEN;
hmac_digest_str_len = SHA1_DIGEST_STR_LEN;
}
else if(ctx->hmac_type == FKO_HMAC_SHA256)
{
hmac_sha256(ctx->encrypted_msg,
ctx->encrypted_msg_len, hmac, hmac_key, hmac_key_len);
hmac_digest_len = SHA256_DIGEST_LEN;
hmac_digest_str_len = SHA256_DIGEST_STR_LEN;
}
else if(ctx->hmac_type == FKO_HMAC_SHA384)
{
hmac_sha384(ctx->encrypted_msg,
ctx->encrypted_msg_len, hmac, hmac_key, hmac_key_len);
hmac_digest_len = SHA384_DIGEST_LEN;
hmac_digest_str_len = SHA384_DIGEST_STR_LEN;
}
else if(ctx->hmac_type == FKO_HMAC_SHA512)
{
hmac_sha512(ctx->encrypted_msg,
ctx->encrypted_msg_len, hmac, hmac_key, hmac_key_len);
hmac_digest_len = SHA512_DIGEST_LEN;
hmac_digest_str_len = SHA512_DIGEST_STR_LEN;
}
hmac_base64 = calloc(1, MD_HEX_SIZE(hmac_digest_len)+1);
if (hmac_base64 == NULL)
return(FKO_ERROR_MEMORY_ALLOCATION);
b64_encode(hmac, hmac_base64, hmac_digest_len);
strip_b64_eq(hmac_base64);
if(ctx->msg_hmac != NULL)
free(ctx->msg_hmac);
ctx->msg_hmac = strdup(hmac_base64);
ctx->msg_hmac_len = strnlen(ctx->msg_hmac, hmac_digest_str_len);
free(hmac_base64);
switch(ctx->msg_hmac_len)
{
case MD5_B64_LEN:
break;
case SHA1_B64_LEN:
break;
case SHA256_B64_LEN:
break;
case SHA384_B64_LEN:
break;
case SHA512_B64_LEN:
break;
default:
return(FKO_ERROR_INVALID_DATA);
}
return FKO_SUCCESS;
}
/***EOF***/