Opted to simply remove the umlat from the author's name, and spelled out the greek letters that were in the comments.
344 lines
12 KiB
C
344 lines
12 KiB
C
/**
|
|
* \file lib/sha3.c
|
|
*
|
|
* \brief Implementation of SHA3
|
|
*/
|
|
|
|
/*
|
|
Implementation by the Keccak, Keyak and Ketje Teams, namely, Guido Bertoni,
|
|
Joan Daemen, Michael Peeters, Gilles Van Assche and Ronny Van Keer, hereby
|
|
denoted as "the implementer".
|
|
|
|
For more information, feedback or questions, please refer to our websites:
|
|
http://keccak.noekeon.org/
|
|
http://keyak.noekeon.org/
|
|
http://ketje.noekeon.org/
|
|
|
|
To the extent possible under law, the implementer has waived all copyright
|
|
and related or neighboring rights to the source code in this file.
|
|
http://creativecommons.org/publicdomain/zero/1.0/
|
|
*/
|
|
|
|
/*
|
|
================================================================
|
|
The purpose of this source file is to demonstrate a readable and compact
|
|
implementation of all the Keccak instances approved in the FIPS 202 standard,
|
|
including the hash functions and the extendable-output functions (XOFs).
|
|
|
|
We focused on clarity and on source-code compactness,
|
|
rather than on the performance.
|
|
|
|
The advantages of this implementation are:
|
|
+ The source code is compact, after removing the comments, that is. :-)
|
|
+ There are no tables with arbitrary constants.
|
|
+ For clarity, the comments link the operations to the specifications using
|
|
the same notation as much as possible.
|
|
+ There is no restriction in cryptographic features. In particular,
|
|
the SHAKE128 and SHAKE256 XOFs can produce any output length.
|
|
+ The code does not use much RAM, as all operations are done in place.
|
|
|
|
The drawbacks of this implementation are:
|
|
- There is no message queue. The whole message must be ready in a buffer.
|
|
- It is not optimized for peformance.
|
|
|
|
The implementation is even simpler on a little endian platform. Just define the
|
|
LITTLE_ENDIAN symbol in that case.
|
|
|
|
For a more complete set of implementations, please refer to
|
|
the Keccak Code Package at https://github.com/gvanas/KeccakCodePackage
|
|
|
|
For more information, please refer to:
|
|
* [Keccak Reference] http://keccak.noekeon.org/Keccak-reference-3.0.pdf
|
|
* [Keccak Specifications Summary] http://keccak.noekeon.org/specs_summary.html
|
|
|
|
This file uses UTF-8 encoding, as some comments use Greek letters.
|
|
================================================================
|
|
*/
|
|
|
|
/**
|
|
* Function to compute the Keccak[r, c] sponge function over a given input.
|
|
* @param rate The value of the rate r.
|
|
* @param capacity The value of the capacity c.
|
|
* @param input Pointer to the input message.
|
|
* @param inputByteLen The number of input bytes provided in the input message.
|
|
* @param delimitedSuffix Bits that will be automatically appended to the end
|
|
* of the input message, as in domain separation.
|
|
* This is a byte containing from 0 to 7 bits
|
|
* These <i>n</i> bits must be in the least significant bit positions
|
|
* and must be delimited with a bit 1 at position <i>n</i>
|
|
* (counting from 0=LSB to 7=MSB) and followed by bits 0
|
|
* from position <i>n</i>+1 to position 7.
|
|
* Some examples:
|
|
* - If no bits are to be appended, then @a delimitedSuffix must be 0x01.
|
|
* - If the 2-bit sequence 0,1 is to be appended (as for SHA3-*), @a delimitedSuffix must be 0x06.
|
|
* - If the 4-bit sequence 1,1,1,1 is to be appended (as for SHAKE*), @a delimitedSuffix must be 0x1F.
|
|
* - If the 7-bit sequence 1,1,0,1,0,0,0 is to be absorbed, @a delimitedSuffix must be 0x8B.
|
|
* @param output Pointer to the buffer where to store the output.
|
|
* @param outputByteLen The number of output bytes desired.
|
|
* @pre One must have r+c=1600 and the rate a multiple of 8 bits in this implementation.
|
|
*/
|
|
//void Keccak(unsigned int rate, unsigned int capacity, const unsigned char *input, unsigned long long int inputByteLen, unsigned char delimitedSuffix, unsigned char *output, unsigned long long int outputByteLen);
|
|
|
|
/**
|
|
* Function to compute SHAKE128 on the input message with any output length.
|
|
*/
|
|
#include "sha3.h"
|
|
|
|
/*
|
|
void FIPS202_SHAKE128(const unsigned char *input, unsigned int inputByteLen, unsigned char *output, int outputByteLen)
|
|
{
|
|
Keccak(1344, 256, input, inputByteLen, 0x1F, output, outputByteLen);
|
|
}
|
|
*/
|
|
|
|
/**
|
|
* Function to compute SHAKE256 on the input message with any output length.
|
|
void FIPS202_SHAKE256(const unsigned char *input, unsigned int inputByteLen, unsigned char *output, int outputByteLen)
|
|
{
|
|
Keccak(1088, 512, input, inputByteLen, 0x1F, output, outputByteLen);
|
|
}
|
|
*/
|
|
|
|
/**
|
|
* Function to compute SHA3-224 on the input message. The output length is fixed to 28 bytes.
|
|
void FIPS202_SHA3_224(const unsigned char *input, unsigned int inputByteLen, unsigned char *output)
|
|
{
|
|
Keccak(1152, 448, input, inputByteLen, 0x06, output, 28);
|
|
}
|
|
*/
|
|
|
|
/**
|
|
* Function to compute SHA3-256 on the input message. The output length is fixed to 32 bytes.
|
|
*/
|
|
void FIPS202_SHA3_256(const unsigned char *input, unsigned int inputByteLen, unsigned char *output)
|
|
{
|
|
Keccak(1088, 512, input, inputByteLen, 0x06, output, 32);
|
|
}
|
|
|
|
/**
|
|
* Function to compute SHA3-384 on the input message. The output length is fixed to 48 bytes.
|
|
void FIPS202_SHA3_384(const unsigned char *input, unsigned int inputByteLen, unsigned char *output)
|
|
{
|
|
Keccak(832, 768, input, inputByteLen, 0x06, output, 48);
|
|
}
|
|
*/
|
|
|
|
/**
|
|
* Function to compute SHA3-512 on the input message. The output length is fixed to 64 bytes.
|
|
*/
|
|
void FIPS202_SHA3_512(const unsigned char *input, unsigned int inputByteLen, unsigned char *output)
|
|
{
|
|
Keccak(576, 1024, input, inputByteLen, 0x06, output, 64);
|
|
}
|
|
|
|
/*
|
|
================================================================
|
|
Technicalities
|
|
================================================================
|
|
*/
|
|
|
|
typedef unsigned char UINT8;
|
|
typedef unsigned long long int UINT64;
|
|
typedef UINT64 tKeccakLane;
|
|
|
|
#ifndef LITTLE_ENDIAN
|
|
/** Function to load a 64-bit value using the little-endian (LE) convention.
|
|
* On a LE platform, this could be greatly simplified using a cast.
|
|
*/
|
|
static UINT64 load64(const UINT8 *x)
|
|
{
|
|
int i;
|
|
UINT64 u=0;
|
|
|
|
for(i=7; i>=0; --i) {
|
|
u <<= 8;
|
|
u |= x[i];
|
|
}
|
|
return u;
|
|
}
|
|
|
|
/** Function to store a 64-bit value using the little-endian (LE) convention.
|
|
* On a LE platform, this could be greatly simplified using a cast.
|
|
*/
|
|
static void store64(UINT8 *x, UINT64 u)
|
|
{
|
|
unsigned int i;
|
|
|
|
for(i=0; i<8; ++i) {
|
|
x[i] = u;
|
|
u >>= 8;
|
|
}
|
|
}
|
|
|
|
/** Function to XOR into a 64-bit value using the little-endian (LE) convention.
|
|
* On a LE platform, this could be greatly simplified using a cast.
|
|
*/
|
|
static void xor64(UINT8 *x, UINT64 u)
|
|
{
|
|
unsigned int i;
|
|
|
|
for(i=0; i<8; ++i) {
|
|
x[i] ^= u;
|
|
u >>= 8;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
================================================================
|
|
A readable and compact implementation of the Keccak-f[1600] permutation.
|
|
================================================================
|
|
*/
|
|
|
|
#define ROL64(a, offset) ((((UINT64)a) << offset) ^ (((UINT64)a) >> (64-offset)))
|
|
#define i(x, y) ((x)+5*(y))
|
|
|
|
#ifdef LITTLE_ENDIAN
|
|
#define readLane(x, y) (((tKeccakLane*)state)[i(x, y)])
|
|
#define writeLane(x, y, lane) (((tKeccakLane*)state)[i(x, y)]) = (lane)
|
|
#define XORLane(x, y, lane) (((tKeccakLane*)state)[i(x, y)]) ^= (lane)
|
|
#else
|
|
#define readLane(x, y) load64((UINT8*)state+sizeof(tKeccakLane)*i(x, y))
|
|
#define writeLane(x, y, lane) store64((UINT8*)state+sizeof(tKeccakLane)*i(x, y), lane)
|
|
#define XORLane(x, y, lane) xor64((UINT8*)state+sizeof(tKeccakLane)*i(x, y), lane)
|
|
#endif
|
|
|
|
/**
|
|
* Function that computes the linear feedback shift register (LFSR) used to
|
|
* define the round constants (see [Keccak Reference, Section 1.2]).
|
|
*/
|
|
int LFSR86540(UINT8 *LFSR)
|
|
{
|
|
int result = ((*LFSR) & 0x01) != 0;
|
|
if (((*LFSR) & 0x80) != 0)
|
|
// Primitive polynomial over GF(2): x^8+x^6+x^5+x^4+1
|
|
(*LFSR) = ((*LFSR) << 1) ^ 0x71;
|
|
else
|
|
(*LFSR) <<= 1;
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Function that computes the Keccak-f[1600] permutation on the given state.
|
|
*/
|
|
void KeccakF1600_StatePermute(void *state)
|
|
{
|
|
unsigned int round, x, y, j, t;
|
|
UINT8 LFSRstate = 0x01;
|
|
|
|
for(round=0; round<24; round++) {
|
|
{ // === Theta step (see [Keccak Reference, Section 2.3.2]) ===
|
|
tKeccakLane C[5], D;
|
|
|
|
// Compute the parity of the columns
|
|
for(x=0; x<5; x++)
|
|
C[x] = readLane(x, 0) ^ readLane(x, 1) ^ readLane(x, 2) ^ readLane(x, 3) ^ readLane(x, 4);
|
|
for(x=0; x<5; x++) {
|
|
// Compute the theta effect for a given column
|
|
D = C[(x+4)%5] ^ ROL64(C[(x+1)%5], 1);
|
|
// Add the theta effect to the whole column
|
|
for (y=0; y<5; y++)
|
|
XORLane(x, y, D);
|
|
}
|
|
}
|
|
|
|
{ // === rho and pi steps (see [Keccak Reference, Sections 2.3.3 and 2.3.4]) ===
|
|
tKeccakLane current, temp;
|
|
// Start at coordinates (1 0)
|
|
x = 1; y = 0;
|
|
current = readLane(x, y);
|
|
// Iterate over ((0 1)(2 3))^t * (1 0) for 0 <= t <= 23
|
|
for(t=0; t<24; t++) {
|
|
// Compute the rotation constant r = (t+1)(t+2)/2
|
|
unsigned int r = ((t+1)*(t+2)/2)%64;
|
|
// Compute ((0 1)(2 3)) * (x y)
|
|
unsigned int Y = (2*x+3*y)%5; x = y; y = Y;
|
|
// Swap current and state(x,y), and rotate
|
|
temp = readLane(x, y);
|
|
writeLane(x, y, ROL64(current, r));
|
|
current = temp;
|
|
}
|
|
}
|
|
|
|
{ // === chi step (see [Keccak Reference, Section 2.3.1]) ===
|
|
tKeccakLane temp[5];
|
|
for(y=0; y<5; y++) {
|
|
// Take a copy of the plane
|
|
for(x=0; x<5; x++)
|
|
temp[x] = readLane(x, y);
|
|
// Compute chi on the plane
|
|
for(x=0; x<5; x++)
|
|
writeLane(x, y, temp[x] ^((~temp[(x+1)%5]) & temp[(x+2)%5]));
|
|
}
|
|
}
|
|
|
|
{ // === iota step (see [Keccak Reference, Section 2.3.5]) ===
|
|
for(j=0; j<7; j++) {
|
|
unsigned int bitPosition = (1<<j)-1; //2^j-1
|
|
if (LFSR86540(&LFSRstate))
|
|
XORLane(0, 0, (tKeccakLane)1<<bitPosition);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
================================================================
|
|
A readable and compact implementation of the Keccak sponge functions
|
|
that use the Keccak-f[1600] permutation.
|
|
================================================================
|
|
*/
|
|
|
|
#include <string.h>
|
|
#define MIN(a, b) ((a) < (b) ? (a) : (b))
|
|
|
|
void Keccak(unsigned int rate, unsigned int capacity, const unsigned char *input, unsigned long long int inputByteLen, unsigned char delimitedSuffix, unsigned char *output, unsigned long long int outputByteLen)
|
|
{
|
|
UINT8 state[200];
|
|
unsigned int rateInBytes = rate/8;
|
|
unsigned int blockSize = 0;
|
|
unsigned int i;
|
|
|
|
if (((rate + capacity) != 1600) || ((rate % 8) != 0))
|
|
return;
|
|
|
|
// === Initialize the state ===
|
|
memset(state, 0, sizeof(state));
|
|
|
|
// === Absorb all the input blocks ===
|
|
while(inputByteLen > 0) {
|
|
blockSize = MIN(inputByteLen, rateInBytes);
|
|
for(i=0; i<blockSize; i++)
|
|
state[i] ^= input[i];
|
|
input += blockSize;
|
|
inputByteLen -= blockSize;
|
|
|
|
if (blockSize == rateInBytes) {
|
|
KeccakF1600_StatePermute(state);
|
|
blockSize = 0;
|
|
}
|
|
}
|
|
|
|
// === Do the padding and switch to the squeezing phase ===
|
|
// Absorb the last few bits and add the first bit of padding (which coincides with the delimiter in delimitedSuffix)
|
|
state[blockSize] ^= delimitedSuffix;
|
|
// If the first bit of padding is at position rate-1, we need a whole new block for the second bit of padding
|
|
if (((delimitedSuffix & 0x80) != 0) && (blockSize == (rateInBytes-1)))
|
|
KeccakF1600_StatePermute(state);
|
|
// Add the second bit of padding
|
|
state[rateInBytes-1] ^= 0x80;
|
|
// Switch to the squeezing phase
|
|
KeccakF1600_StatePermute(state);
|
|
|
|
// === Squeeze out all the output blocks ===
|
|
while(outputByteLen > 0) {
|
|
blockSize = MIN(outputByteLen, rateInBytes);
|
|
memcpy(output, state, blockSize);
|
|
output += blockSize;
|
|
outputByteLen -= blockSize;
|
|
|
|
if (outputByteLen > 0)
|
|
KeccakF1600_StatePermute(state);
|
|
}
|
|
}
|