/* ***************************************************************************** * * File: sha1.c * * Purpose: Implementation of the SHA1 message-digest algorithm for * libfwknop. * * NIST Secure Hash Algorithm * Heavily modified by Uwe Hollerbach * from Peter C. Gutmann's implementation as found in * Applied Cryptography by Bruce Schneier * Further modifications to include the "UNRAVEL" stuff, below * * This code is in the public domain * ***************************************************************************** */ #include "sha1.h" #include "fko_common.h" /* SHA f()-functions */ #define f1(x,y,z) ((x & y) | (~x & z)) #define f2(x,y,z) (x ^ y ^ z) #define f3(x,y,z) ((x & y) | (x & z) | (y & z)) #define f4(x,y,z) (x ^ y ^ z) /* SHA constants */ #define CONST1 0x5a827999L #define CONST2 0x6ed9eba1L #define CONST3 0x8f1bbcdcL #define CONST4 0xca62c1d6L /* truncate to 32 bits -- should be a null op on 32-bit machines */ #define T32(x) ((x) & 0xffffffffL) /* 32-bit rotate */ #define R32(x,n) T32(((x << n) | (x >> (32 - n)))) /* the generic case, for when the overall rotation is not unraveled */ #define FG(n) \ T = T32(R32(A,5) + f##n(B,C,D) + E + *WP++ + CONST##n); \ E = D; D = C; C = R32(B,30); B = A; A = T /* specific cases, for when the overall rotation is unraveled */ #define FA(n) \ T = T32(R32(A,5) + f##n(B,C,D) + E + *WP++ + CONST##n); B = R32(B,30) #define FB(n) \ E = T32(R32(T,5) + f##n(A,B,C) + D + *WP++ + CONST##n); A = R32(A,30) #define FC(n) \ D = T32(R32(E,5) + f##n(T,A,B) + C + *WP++ + CONST##n); T = R32(T,30) #define FD(n) \ C = T32(R32(D,5) + f##n(E,T,A) + B + *WP++ + CONST##n); E = R32(E,30) #define FE(n) \ B = T32(R32(C,5) + f##n(D,E,T) + A + *WP++ + CONST##n); D = R32(D,30) #define FT(n) \ A = T32(R32(B,5) + f##n(C,D,E) + T + *WP++ + CONST##n); C = R32(C,30) void sha1_transform(SHA1_INFO *sha1_info) { int i; uint8_t *dp; uint32_t T, A, B, C, D, E, W[80], *WP; dp = sha1_info->data; #undef SWAP_DONE #if BYTEORDER == 1234 #define SWAP_DONE for (i = 0; i < 16; ++i) { T = *((uint32_t *) dp); dp += 4; W[i] = ((T << 24) & 0xff000000) | ((T << 8) & 0x00ff0000) | ((T >> 8) & 0x0000ff00) | ((T >> 24) & 0x000000ff); } #endif #if BYTEORDER == 4321 #define SWAP_DONE for (i = 0; i < 16; ++i) { T = *((uint32_t *) dp); dp += 4; W[i] = TRUNC32(T); } #endif #if BYTEORDER == 12345678 #define SWAP_DONE for (i = 0; i < 16; i += 2) { T = *((uint32_t *) dp); dp += 8; W[i] = ((T << 24) & 0xff000000) | ((T << 8) & 0x00ff0000) | ((T >> 8) & 0x0000ff00) | ((T >> 24) & 0x000000ff); T >>= 32; W[i+1] = ((T << 24) & 0xff000000) | ((T << 8) & 0x00ff0000) | ((T >> 8) & 0x0000ff00) | ((T >> 24) & 0x000000ff); } #endif #if BYTEORDER == 87654321 #define SWAP_DONE for (i = 0; i < 16; i += 2) { T = *((uint32_t *) dp); dp += 8; W[i] = TRUNC32(T >> 32); W[i+1] = TRUNC32(T); } #endif #ifndef SWAP_DONE #define SWAP_DONE for (i = 0; i < 16; ++i) { T = *((uint32_t *) dp); dp += 4; W[i] = TRUNC32(T); } #ifndef WIN32 #warning Undetermined or unsupported Byte Order... We will try LITTLE_ENDIAN #endif #endif /* SWAP_DONE */ for (i = 16; i < 80; ++i) { W[i] = W[i-3] ^ W[i-8] ^ W[i-14] ^ W[i-16]; W[i] = R32(W[i], 1); } A = sha1_info->digest[0]; B = sha1_info->digest[1]; C = sha1_info->digest[2]; D = sha1_info->digest[3]; E = sha1_info->digest[4]; WP = W; #ifdef UNRAVEL FA(1); FB(1); FC(1); FD(1); FE(1); FT(1); FA(1); FB(1); FC(1); FD(1); FE(1); FT(1); FA(1); FB(1); FC(1); FD(1); FE(1); FT(1); FA(1); FB(1); FC(2); FD(2); FE(2); FT(2); FA(2); FB(2); FC(2); FD(2); FE(2); FT(2); FA(2); FB(2); FC(2); FD(2); FE(2); FT(2); FA(2); FB(2); FC(2); FD(2); FE(3); FT(3); FA(3); FB(3); FC(3); FD(3); FE(3); FT(3); FA(3); FB(3); FC(3); FD(3); FE(3); FT(3); FA(3); FB(3); FC(3); FD(3); FE(3); FT(3); FA(4); FB(4); FC(4); FD(4); FE(4); FT(4); FA(4); FB(4); FC(4); FD(4); FE(4); FT(4); FA(4); FB(4); FC(4); FD(4); FE(4); FT(4); FA(4); FB(4); sha1_info->digest[0] = T32(sha1_info->digest[0] + E); sha1_info->digest[1] = T32(sha1_info->digest[1] + T); sha1_info->digest[2] = T32(sha1_info->digest[2] + A); sha1_info->digest[3] = T32(sha1_info->digest[3] + B); sha1_info->digest[4] = T32(sha1_info->digest[4] + C); #else /* !UNRAVEL */ #ifdef UNROLL_LOOPS FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); #else /* !UNROLL_LOOPS */ for (i = 0; i < 20; ++i) { FG(1); } for (i = 20; i < 40; ++i) { FG(2); } for (i = 40; i < 60; ++i) { FG(3); } for (i = 60; i < 80; ++i) { FG(4); } #endif /* !UNROLL_LOOPS */ sha1_info->digest[0] = T32(sha1_info->digest[0] + A); sha1_info->digest[1] = T32(sha1_info->digest[1] + B); sha1_info->digest[2] = T32(sha1_info->digest[2] + C); sha1_info->digest[3] = T32(sha1_info->digest[3] + D); sha1_info->digest[4] = T32(sha1_info->digest[4] + E); #endif /* !UNRAVEL */ } /* initialize the SHA digest */ void sha1_init(SHA1_INFO *sha1_info) { sha1_info->digest[0] = 0x67452301L; sha1_info->digest[1] = 0xefcdab89L; sha1_info->digest[2] = 0x98badcfeL; sha1_info->digest[3] = 0x10325476L; sha1_info->digest[4] = 0xc3d2e1f0L; sha1_info->count_lo = 0L; sha1_info->count_hi = 0L; sha1_info->local = 0; } /* update the SHA digest */ void sha1_update(SHA1_INFO *sha1_info, uint8_t *buffer, int count) { int i; uint32_t clo; clo = T32(sha1_info->count_lo + ((uint32_t) count << 3)); if (clo < sha1_info->count_lo) { ++sha1_info->count_hi; } sha1_info->count_lo = clo; sha1_info->count_hi += (uint32_t) count >> 29; if (sha1_info->local) { i = SHA1_BLOCKSIZE - sha1_info->local; if (i > count) { i = count; } memcpy(((uint8_t *) sha1_info->data) + sha1_info->local, buffer, i); count -= i; buffer += i; sha1_info->local += i; if (sha1_info->local == SHA1_BLOCKSIZE) { sha1_transform(sha1_info); } else { return; } } while (count >= SHA1_BLOCKSIZE) { memcpy(sha1_info->data, buffer, SHA1_BLOCKSIZE); buffer += SHA1_BLOCKSIZE; count -= SHA1_BLOCKSIZE; sha1_transform(sha1_info); } memcpy(sha1_info->data, buffer, count); sha1_info->local = count; } void sha1_transform_and_copy(unsigned char digest[20], SHA1_INFO *sha1_info) { sha1_transform(sha1_info); digest[ 0] = (unsigned char) ((sha1_info->digest[0] >> 24) & 0xff); digest[ 1] = (unsigned char) ((sha1_info->digest[0] >> 16) & 0xff); digest[ 2] = (unsigned char) ((sha1_info->digest[0] >> 8) & 0xff); digest[ 3] = (unsigned char) ((sha1_info->digest[0] ) & 0xff); digest[ 4] = (unsigned char) ((sha1_info->digest[1] >> 24) & 0xff); digest[ 5] = (unsigned char) ((sha1_info->digest[1] >> 16) & 0xff); digest[ 6] = (unsigned char) ((sha1_info->digest[1] >> 8) & 0xff); digest[ 7] = (unsigned char) ((sha1_info->digest[1] ) & 0xff); digest[ 8] = (unsigned char) ((sha1_info->digest[2] >> 24) & 0xff); digest[ 9] = (unsigned char) ((sha1_info->digest[2] >> 16) & 0xff); digest[10] = (unsigned char) ((sha1_info->digest[2] >> 8) & 0xff); digest[11] = (unsigned char) ((sha1_info->digest[2] ) & 0xff); digest[12] = (unsigned char) ((sha1_info->digest[3] >> 24) & 0xff); digest[13] = (unsigned char) ((sha1_info->digest[3] >> 16) & 0xff); digest[14] = (unsigned char) ((sha1_info->digest[3] >> 8) & 0xff); digest[15] = (unsigned char) ((sha1_info->digest[3] ) & 0xff); digest[16] = (unsigned char) ((sha1_info->digest[4] >> 24) & 0xff); digest[17] = (unsigned char) ((sha1_info->digest[4] >> 16) & 0xff); digest[18] = (unsigned char) ((sha1_info->digest[4] >> 8) & 0xff); digest[19] = (unsigned char) ((sha1_info->digest[4] ) & 0xff); } /* finish computing the SHA digest */ void sha1_final(uint8_t digest[20], SHA1_INFO *sha1_info) { int count; uint32_t lo_bit_count, hi_bit_count; lo_bit_count = sha1_info->count_lo; hi_bit_count = sha1_info->count_hi; count = (int) ((lo_bit_count >> 3) & 0x3f); ((uint8_t *) sha1_info->data)[count++] = 0x80; if (count > SHA1_BLOCKSIZE - 8) { memset(((uint8_t *) sha1_info->data) + count, 0, SHA1_BLOCKSIZE - count); sha1_transform(sha1_info); memset((uint8_t *) sha1_info->data, 0, SHA1_BLOCKSIZE - 8); } else { memset(((uint8_t *) sha1_info->data) + count, 0, SHA1_BLOCKSIZE - 8 - count); } sha1_info->data[56] = (uint8_t)((hi_bit_count >> 24) & 0xff); sha1_info->data[57] = (uint8_t)((hi_bit_count >> 16) & 0xff); sha1_info->data[58] = (uint8_t)((hi_bit_count >> 8) & 0xff); sha1_info->data[59] = (uint8_t)((hi_bit_count >> 0) & 0xff); sha1_info->data[60] = (uint8_t)((lo_bit_count >> 24) & 0xff); sha1_info->data[61] = (uint8_t)((lo_bit_count >> 16) & 0xff); sha1_info->data[62] = (uint8_t)((lo_bit_count >> 8) & 0xff); sha1_info->data[63] = (uint8_t)((lo_bit_count >> 0) & 0xff); sha1_transform_and_copy(digest, sha1_info); } /***EOF***/