/* $Id$ ***************************************************************************** * * File: sha256.c * * Purpose: Implementation of the SHA256 message-digest algorithm for * libfwknop. * * * Copyright (C) 2001 Rafael R. Sevilla * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the Free * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * ***************************************************************************** */ #include "sha.h" /* Truncate to 32 bits -- should be a null op on 32-bit machines */ #define TRUNC32(x) ((x) & 0xffffffffL) /* 32-bit rotate to the RIGHT */ #define ROT32(x,n) TRUNC32(((x >> n) | (x << (32 - n)))) #define CH(x, y, z) (((x) & (y))^(~(x) & (z))) #define MAJ(x, y, z)(((x) & (y))^((x) & (z))^((y) & (z))) /* Upper-case sigma functions in SHA spec */ #define USIG0(x) (ROT32(x, 2)^ROT32(x, 13)^ROT32(x, 22)) #define USIG1(x) (ROT32(x, 6)^ROT32(x, 11)^ROT32(x, 25)) /* Lower-case sigma functions in SHA spec */ #define LSIG0(x) (ROT32(x, 7)^ROT32(x, 18)^TRUNC32(x >> 3)) #define LSIG1(x) (ROT32(x, 17)^ROT32(x, 19)^TRUNC32(x >> 10)) /* SHA256 constants */ static uint32 K[64] = { 0x428a2f98L, 0x71374491L, 0xb5c0fbcfL, 0xe9b5dba5L, 0x3956c25bL, 0x59f111f1L, 0x923f82a4L, 0xab1c5ed5L, 0xd807aa98L, 0x12835b01L, 0x243185beL, 0x550c7dc3L, 0x72be5d74L, 0x80deb1feL, 0x9bdc06a7L, 0xc19bf174L, 0xe49b69c1L, 0xefbe4786L, 0x0fc19dc6L, 0x240ca1ccL, 0x2de92c6fL, 0x4a7484aaL, 0x5cb0a9dcL, 0x76f988daL, 0x983e5152L, 0xa831c66dL, 0xb00327c8L, 0xbf597fc7L, 0xc6e00bf3L, 0xd5a79147L, 0x06ca6351L, 0x14292967L, 0x27b70a85L, 0x2e1b2138L, 0x4d2c6dfcL, 0x53380d13L, 0x650a7354L, 0x766a0abbL, 0x81c2c92eL, 0x92722c85L, 0xa2bfe8a1L, 0xa81a664bL, 0xc24b8b70L, 0xc76c51a3L, 0xd192e819L, 0xd6990624L, 0xf40e3585L, 0x106aa070L, 0x19a4c116L, 0x1e376c08L, 0x2748774cL, 0x34b0bcb5L, 0x391c0cb3L, 0x4ed8aa4aL, 0x5b9cca4fL, 0x682e6ff3L, 0x748f82eeL, 0x78a5636fL, 0x84c87814L, 0x8cc70208L, 0x90befffaL, 0xa4506cebL, 0xbef9a3f7L, 0xc67178f2L }; static void sha256_transform(SHA_INFO *sha_info) { int i, j; uint8 *dp; uint32 T, T1, T2, A, B, C, D, E, F, G, H, W[64]; dp = sha_info->data; #undef SWAP_DONE #if BYTEORDER == 1234 #define SWAP_DONE for (i = 0; i < 16; ++i) { T = *((uint32 *) dp); dp += 4; W[i] = ((T << 24) & 0xff000000) | ((T << 8) & 0x00ff0000) | ((T >> 8) & 0x0000ff00) | ((T >> 24) & 0x000000ff); } #endif #if BYTEORDER == 4321 #define SWAP_DONE for (i = 0; i < 16; ++i) { T = *((uint32 *) dp); dp += 4; W[i] = TRUNC32(T); } #endif #if BYTEORDER == 12345678 #define SWAP_DONE for (i = 0; i < 16; i += 2) { T = *((uint32 *) dp); dp += 8; W[i] = ((T << 24) & 0xff000000) | ((T << 8) & 0x00ff0000) | ((T >> 8) & 0x0000ff00) | ((T >> 24) & 0x000000ff); T >>= 32; W[i+1] = ((T << 24) & 0xff000000) | ((T << 8) & 0x00ff0000) | ((T >> 8) & 0x0000ff00) | ((T >> 24) & 0x000000ff); } #endif #if BYTEORDER == 87654321 #define SWAP_DONE for (i = 0; i < 16; i += 2) { T = *((uint32 *) dp); dp += 8; W[i] = TRUNC32(T >> 32); W[i+1] = TRUNC32(T); } #endif #ifndef SWAP_DONE #error Unknown byte order -- you need to add code here #endif /* SWAP_DONE */ A = sha_info->digest[0]; B = sha_info->digest[1]; C = sha_info->digest[2]; D = sha_info->digest[3]; E = sha_info->digest[4]; F = sha_info->digest[5]; G = sha_info->digest[6]; H = sha_info->digest[7]; for (i=16; i<64; i++) W[i] = TRUNC32(LSIG1(W[i-2]) + W[i-7] + LSIG0(W[i-15]) + W[i-16]); for (j=0; j<64; j++) { T1 = TRUNC32(H + USIG1(E) + CH(E, F, G) + K[j] + W[j]); T2 = TRUNC32(USIG0(A) + MAJ(A, B, C)); H = G; G = F; F = E; E = TRUNC32(D + T1); D = C; C = B; B = A; A = TRUNC32(T1 + T2); } sha_info->digest[0] = TRUNC32(sha_info->digest[0] + A); sha_info->digest[1] = TRUNC32(sha_info->digest[1] + B); sha_info->digest[2] = TRUNC32(sha_info->digest[2] + C); sha_info->digest[3] = TRUNC32(sha_info->digest[3] + D); sha_info->digest[4] = TRUNC32(sha_info->digest[4] + E); sha_info->digest[5] = TRUNC32(sha_info->digest[5] + F); sha_info->digest[6] = TRUNC32(sha_info->digest[6] + G); sha_info->digest[7] = TRUNC32(sha_info->digest[7] + H); } void sha256_init(SHA_INFO *sha_info) { sha_info->digest[0] = 0x6a09e667L; sha_info->digest[1] = 0xbb67ae85L; sha_info->digest[2] = 0x3c6ef372L; sha_info->digest[3] = 0xa54ff53aL; sha_info->digest[4] = 0x510e527fL; sha_info->digest[5] = 0x9b05688cL; sha_info->digest[6] = 0x1f83d9abL; sha_info->digest[7] = 0x5be0cd19L; sha_info->count_lo = 0L; sha_info->count_hi = 0L; sha_info->local = 0; memset((uint8 *)sha_info->data, 0, SHA_BLOCKSIZE); } /* Update the SHA digest */ void sha256_update(SHA_INFO *sha_info, uint8 *buffer, int count) { int i; uint32 clo; clo = TRUNC32(sha_info->count_lo + ((uint8) count << 3)); if (clo < sha_info->count_lo) { sha_info->count_hi++; } sha_info->count_lo = clo; sha_info->count_hi += (uint8) count >> 29; if (sha_info->local) { i = SHA_BLOCKSIZE - sha_info->local; if (i > count) { i = count; } memcpy(((uint8 *) sha_info->data) + sha_info->local, buffer, i); count -= i; buffer += i; sha_info->local += i; if (sha_info->local == SHA_BLOCKSIZE) { sha256_transform(sha_info); } else { return; } } while (count >= SHA_BLOCKSIZE) { memcpy(sha_info->data, buffer, SHA_BLOCKSIZE); buffer += SHA_BLOCKSIZE; count -= SHA_BLOCKSIZE; sha256_transform(sha_info); } memcpy(sha_info->data, buffer, count); sha_info->local = count; } /* Finish computing the SHA digest */ void sha256_final(SHA_INFO *sha_info) { int count; uint32 lo_bit_count, hi_bit_count; lo_bit_count = sha_info->count_lo; hi_bit_count = sha_info->count_hi; count = (int) ((lo_bit_count >> 3) & 0x3f); ((uint8 *) sha_info->data)[count++] = 0x80; if (count > SHA_BLOCKSIZE - 8) { memset(((uint8 *) sha_info->data) + count, 0, SHA_BLOCKSIZE - count); sha256_transform(sha_info); memset((uint8 *) sha_info->data, 0, SHA_BLOCKSIZE - 8); } else { memset(((uint8 *) sha_info->data) + count, 0, SHA_BLOCKSIZE - 8 - count); } sha_info->data[56] = (hi_bit_count >> 24) & 0xff; sha_info->data[57] = (hi_bit_count >> 16) & 0xff; sha_info->data[58] = (hi_bit_count >> 8) & 0xff; sha_info->data[59] = (hi_bit_count >> 0) & 0xff; sha_info->data[60] = (lo_bit_count >> 24) & 0xff; sha_info->data[61] = (lo_bit_count >> 16) & 0xff; sha_info->data[62] = (lo_bit_count >> 8) & 0xff; sha_info->data[63] = (lo_bit_count >> 0) & 0xff; sha256_transform(sha_info); } void sha256_unpackdigest(uint8 digest[32], SHA_INFO *sha_info) { digest[ 0] = (unsigned char) ((sha_info->digest[0] >> 24) & 0xff); digest[ 1] = (unsigned char) ((sha_info->digest[0] >> 16) & 0xff); digest[ 2] = (unsigned char) ((sha_info->digest[0] >> 8) & 0xff); digest[ 3] = (unsigned char) ((sha_info->digest[0] ) & 0xff); digest[ 4] = (unsigned char) ((sha_info->digest[1] >> 24) & 0xff); digest[ 5] = (unsigned char) ((sha_info->digest[1] >> 16) & 0xff); digest[ 6] = (unsigned char) ((sha_info->digest[1] >> 8) & 0xff); digest[ 7] = (unsigned char) ((sha_info->digest[1] ) & 0xff); digest[ 8] = (unsigned char) ((sha_info->digest[2] >> 24) & 0xff); digest[ 9] = (unsigned char) ((sha_info->digest[2] >> 16) & 0xff); digest[10] = (unsigned char) ((sha_info->digest[2] >> 8) & 0xff); digest[11] = (unsigned char) ((sha_info->digest[2] ) & 0xff); digest[12] = (unsigned char) ((sha_info->digest[3] >> 24) & 0xff); digest[13] = (unsigned char) ((sha_info->digest[3] >> 16) & 0xff); digest[14] = (unsigned char) ((sha_info->digest[3] >> 8) & 0xff); digest[15] = (unsigned char) ((sha_info->digest[3] ) & 0xff); digest[16] = (unsigned char) ((sha_info->digest[4] >> 24) & 0xff); digest[17] = (unsigned char) ((sha_info->digest[4] >> 16) & 0xff); digest[18] = (unsigned char) ((sha_info->digest[4] >> 8) & 0xff); digest[19] = (unsigned char) ((sha_info->digest[4] ) & 0xff); digest[20] = (unsigned char) ((sha_info->digest[5] >> 24) & 0xff); digest[21] = (unsigned char) ((sha_info->digest[5] >> 16) & 0xff); digest[22] = (unsigned char) ((sha_info->digest[5] >> 8) & 0xff); digest[23] = (unsigned char) ((sha_info->digest[5] ) & 0xff); digest[24] = (unsigned char) ((sha_info->digest[6] >> 24) & 0xff); digest[25] = (unsigned char) ((sha_info->digest[6] >> 16) & 0xff); digest[26] = (unsigned char) ((sha_info->digest[6] >> 8) & 0xff); digest[27] = (unsigned char) ((sha_info->digest[6] ) & 0xff); digest[28] = (unsigned char) ((sha_info->digest[7] >> 24) & 0xff); digest[29] = (unsigned char) ((sha_info->digest[7] >> 16) & 0xff); digest[30] = (unsigned char) ((sha_info->digest[7] >> 8) & 0xff); digest[31] = (unsigned char) ((sha_info->digest[7] ) & 0xff); } /***EOF***/