Merge pull request #183 from oneru/for-2.6.9

For 2.6.9
This commit is contained in:
Michael Rash 2015-12-30 22:42:40 -05:00
commit 81419d8f00
15 changed files with 2331 additions and 17 deletions

View File

@ -1120,7 +1120,7 @@ parse_rc_param(fko_cli_options_t *options, const char *var_name, char * val)
if(tmpint < 0)
{
log_msg(LOG_VERBOSITY_WARNING,
"HMAC_DIGEST_TYPE argument '%s' must be one of {md5,sha1,sha256,sha384,sha512}",
"HMAC_DIGEST_TYPE argument '%s' must be one of {md5,sha1,sha256,sha384,sha512,sha3_256,sha3_512}",
val);
parse_error = -1;
}
@ -2157,7 +2157,7 @@ config_init(fko_cli_options_t *options, int argc, char **argv)
if((options->hmac_type = hmac_digest_strtoint(optarg)) < 0)
{
log_msg(LOG_VERBOSITY_ERROR,
"* Invalid hmac digest type: %s, use {md5,sha1,sha256,sha384,sha512}",
"* Invalid hmac digest type: %s, use {md5,sha1,sha256,sha384,sha512,sha3_256,sha3_512}",
optarg);
exit(EXIT_FAILURE);
}
@ -2208,7 +2208,7 @@ config_init(fko_cli_options_t *options, int argc, char **argv)
if((options->digest_type = digest_strtoint(optarg)) < 0)
{
log_msg(LOG_VERBOSITY_ERROR,
"* Invalid digest type: %s, use {md5,sha1,sha256,sha384,sha512}",
"* Invalid digest type: %s, use {md5,sha1,sha256,sha384,sha512,sha3_256,sha3_512}",
optarg);
exit(EXIT_FAILURE);
}

View File

@ -182,6 +182,10 @@ digest_strtoint(const char *dt_str)
return(FKO_DIGEST_SHA384);
else if(strcasecmp(dt_str, "sha512") == 0)
return(FKO_DIGEST_SHA512);
else if(strcasecmp(dt_str, "sha3_256") == 0)
return(FKO_DIGEST_SHA3_512);
else if(strcasecmp(dt_str, "sha3_512") == 0)
return(FKO_DIGEST_SHA3_512);
else
return(-1);
}
@ -222,6 +226,12 @@ digest_inttostr(int digest, char* digest_str, size_t digest_size)
case FKO_DIGEST_SHA512:
strlcpy(digest_str, "SHA512", digest_size);
break;
case FKO_DIGEST_SHA3_256:
strlcpy(digest_str, "SHA3_256", digest_size);
break;
case FKO_DIGEST_SHA3_512:
strlcpy(digest_str, "SHA3_512", digest_size);
break;
default:
strlcpy(digest_str, "Unknown", digest_size);
digest_not_valid = -1;
@ -244,6 +254,10 @@ hmac_digest_strtoint(const char *dt_str)
return(FKO_HMAC_SHA384);
else if(strcasecmp(dt_str, "sha512") == 0)
return(FKO_HMAC_SHA512);
else if(strcasecmp(dt_str, "sha3_256") == 0)
return(FKO_HMAC_SHA3_256);
else if(strcasecmp(dt_str, "sha3_512") == 0)
return(FKO_HMAC_SHA3_512);
else
return(-1);
}
@ -322,6 +336,12 @@ hmac_digest_inttostr(int digest, char* digest_str, size_t digest_size)
case FKO_HMAC_SHA512:
strlcpy(digest_str, "SHA512", digest_size);
break;
case FKO_HMAC_SHA3_256:
strlcpy(digest_str, "SHA3_256", digest_size);
break;
case FKO_HMAC_SHA3_512:
strlcpy(digest_str, "SHA3_512", digest_size);
break;
default:
strlcpy(digest_str, "Unknown", digest_size);
digest_not_valid = -1;

View File

@ -7,7 +7,7 @@ libfko_source_files = \
fko_message.h fko_nat_access.c fko_rand_value.c fko_server_auth.c \
fko.h fko_limits.h fko_timestamp.c fko_hmac.c hmac.c hmac.h \
fko_user.c fko_user.h md5.c md5.h rijndael.c rijndael.h sha1.c \
sha1.h sha2.c sha2.h fko_context.h fko_state.h \
sha1.h sha2.c sha2.h sha3.c sha3.h fko_context.h fko_state.h \
gpgme_funcs.c gpgme_funcs.h

View File

@ -49,6 +49,10 @@
#endif
#endif
#ifdef HAVE_C_UNIT_TESTS
DECLARE_TEST_SUITE(digest_test, "Cipher functions test suite");
#endif
/* Get random data.
*/
void
@ -414,4 +418,247 @@ add_gpg_prefix(fko_ctx_t ctx)
return(FKO_SUCCESS);
}
#ifdef HAVE_C_UNIT_TESTS
DECLARE_UTEST(test_aes_ecb_128, "aes ecb 128 test vectors") //http://www.inconteam.com/software-development/41-encryption/55-aes-test-vectors#aes-cbc-128
{
RIJNDAEL_context ctx;
unsigned char in[1024] = {0};
unsigned char out[1024] = {0};
unsigned char expected_out1[1024] = {0};
unsigned char expected_out2[1024] = {0};
unsigned char expected_out3[1024] = {0};
unsigned char expected_out4[1024] = {0};
memcpy(expected_out1, "\x3a\xd7\x7b\xb4\x0d\x7a\x36\x60\xa8\x9e\xca\xf3\x24\x66\xef\x97", 16);
memcpy(expected_out2, "\xf5\xd3\xd5\x85\x03\xb9\x69\x9d\xe7\x85\x89\x5a\x96\xfd\xba\xaf", 16);
memcpy(expected_out3, "\x43\xb1\xcd\x7f\x59\x8e\xce\x23\x88\x1b\x00\xe3\xed\x03\x06\x88", 16);
memcpy(expected_out4, "\x7b\x0c\x78\x5e\x27\xe8\xad\x3f\x82\x23\x20\x71\x04\x72\x5d\xd4", 16);
memcpy(ctx.key, "\x2b\x7e\x15\x16\x28\xae\xd2\xa6\xab\xf7\x15\x88\x09\xcf\x4f\x3c", 16);
rijndael_setup(&ctx, 16, ctx.key);
memcpy(in, "\x6b\xc1\xbe\xe2\x2e\x40\x9f\x96\xe9\x3d\x7e\x11\x73\x93\x17\x2a", 16);
rijndael_encrypt(&ctx, in, out);
CU_ASSERT(memcmp(out, expected_out1, 16) == 0);
memcpy(in, "\xae\x2d\x8a\x57\x1e\x03\xac\x9c\x9e\xb7\x6f\xac\x45\xaf\x8e\x51", 16);
rijndael_encrypt(&ctx, in, out);
CU_ASSERT(memcmp(out, expected_out2, 16) == 0);
memcpy(in, "\x30\xc8\x1c\x46\xa3\x5c\xe4\x11\xe5\xfb\xc1\x19\x1a\x0a\x52\xef", 16);
rijndael_encrypt(&ctx, in, out);
CU_ASSERT(memcmp(out, expected_out3, 16) == 0);
memcpy(in, "\xf6\x9f\x24\x45\xdf\x4f\x9b\x17\xad\x2b\x41\x7b\xe6\x6c\x37\x10", 16);
rijndael_encrypt(&ctx, in, out);
CU_ASSERT(memcmp(out, expected_out4, 16) == 0);
}
DECLARE_UTEST(test_aes_ecb_192, "aes ecb 192 test vectors") //http://www.inconteam.com/software-development/41-encryption/55-aes-test-vectors#aes-cbc-128
{
RIJNDAEL_context ctx;
unsigned char in[1024] = {0};
unsigned char out[1024] = {0};
unsigned char expected_out1[1024] = {0};
unsigned char expected_out2[1024] = {0};
unsigned char expected_out3[1024] = {0};
unsigned char expected_out4[1024] = {0};
memcpy(expected_out1, "\xbd\x33\x4f\x1d\x6e\x45\xf2\x5f\xf7\x12\xa2\x14\x57\x1f\xa5\xcc", 16);
memcpy(expected_out2, "\x97\x41\x04\x84\x6d\x0a\xd3\xad\x77\x34\xec\xb3\xec\xee\x4e\xef", 16);
memcpy(expected_out3, "\xef\x7a\xfd\x22\x70\xe2\xe6\x0a\xdc\xe0\xba\x2f\xac\xe6\x44\x4e", 16);
memcpy(expected_out4, "\x9a\x4b\x41\xba\x73\x8d\x6c\x72\xfb\x16\x69\x16\x03\xc1\x8e\x0e", 16);
memcpy(ctx.key, "\x8e\x73\xb0\xf7\xda\x0e\x64\x52\xc8\x10\xf3\x2b\x80\x90\x79\xe5\x62\xf8\xea\xd2\x52\x2c\x6b\x7b", 24);
rijndael_setup(&ctx, 24, ctx.key);
memcpy(in, "\x6b\xc1\xbe\xe2\x2e\x40\x9f\x96\xe9\x3d\x7e\x11\x73\x93\x17\x2a", 16);
rijndael_encrypt(&ctx, in, out);
CU_ASSERT(memcmp(out, expected_out1, 16) == 0);
memcpy(in, "\xae\x2d\x8a\x57\x1e\x03\xac\x9c\x9e\xb7\x6f\xac\x45\xaf\x8e\x51", 16);
rijndael_encrypt(&ctx, in, out);
CU_ASSERT(memcmp(out, expected_out2, 16) == 0);
memcpy(in, "\x30\xc8\x1c\x46\xa3\x5c\xe4\x11\xe5\xfb\xc1\x19\x1a\x0a\x52\xef", 16);
rijndael_encrypt(&ctx, in, out);
CU_ASSERT(memcmp(out, expected_out3, 16) == 0);
memcpy(in, "\xf6\x9f\x24\x45\xdf\x4f\x9b\x17\xad\x2b\x41\x7b\xe6\x6c\x37\x10", 16);
rijndael_encrypt(&ctx, in, out);
CU_ASSERT(memcmp(out, expected_out4, 16) == 0);
}
DECLARE_UTEST(test_aes_ecb_256, "aes ecb 256 test vectors") //http://www.inconteam.com/software-development/41-encryption/55-aes-test-vectors#aes-cbc-128
{
RIJNDAEL_context ctx;
unsigned char in[1024] = {0};
unsigned char out[1024] = {0};
unsigned char expected_out1[1024] = {0};
unsigned char expected_out2[1024] = {0};
unsigned char expected_out3[1024] = {0};
unsigned char expected_out4[1024] = {0};
memcpy(expected_out1, "\xf3\xee\xd1\xbd\xb5\xd2\xa0\x3c\x06\x4b\x5a\x7e\x3d\xb1\x81\xf8", 16);
memcpy(expected_out2, "\x59\x1c\xcb\x10\xd4\x10\xed\x26\xdc\x5b\xa7\x4a\x31\x36\x28\x70", 16);
memcpy(expected_out3, "\xb6\xed\x21\xb9\x9c\xa6\xf4\xf9\xf1\x53\xe7\xb1\xbe\xaf\xed\x1d", 16);
memcpy(expected_out4, "\x23\x30\x4b\x7a\x39\xf9\xf3\xff\x06\x7d\x8d\x8f\x9e\x24\xec\xc7", 16);
memcpy(ctx.key, "\x60\x3d\xeb\x10\x15\xca\x71\xbe\x2b\x73\xae\xf0\x85\x7d\x77\x81\x1f\x35\x2c\x07\x3b\x61\x08\xd7\x2d\x98\x10\xa3\x09\x14\xdf\xf4", 32);
rijndael_setup(&ctx, 32, ctx.key);
memcpy(in, "\x6b\xc1\xbe\xe2\x2e\x40\x9f\x96\xe9\x3d\x7e\x11\x73\x93\x17\x2a", 16);
rijndael_encrypt(&ctx, in, out);
CU_ASSERT(memcmp(out, expected_out1, 16) == 0);
memcpy(in, "\xae\x2d\x8a\x57\x1e\x03\xac\x9c\x9e\xb7\x6f\xac\x45\xaf\x8e\x51", 16);
rijndael_encrypt(&ctx, in, out);
CU_ASSERT(memcmp(out, expected_out2, 16) == 0);
memcpy(in, "\x30\xc8\x1c\x46\xa3\x5c\xe4\x11\xe5\xfb\xc1\x19\x1a\x0a\x52\xef", 16);
rijndael_encrypt(&ctx, in, out);
CU_ASSERT(memcmp(out, expected_out3, 16) == 0);
memcpy(in, "\xf6\x9f\x24\x45\xdf\x4f\x9b\x17\xad\x2b\x41\x7b\xe6\x6c\x37\x10", 16);
rijndael_encrypt(&ctx, in, out);
CU_ASSERT(memcmp(out, expected_out4, 16) == 0);
}
DECLARE_UTEST(test_aes_cbc_128, "aes cbc 128 test vectors") //http://www.inconteam.com/software-development/41-encryption/55-aes-test-vectors#aes-cbc-128
{ //would like to test rij_encrypt against known test vectors, but the method of generating the key and iv make this impossible.
RIJNDAEL_context ctx;
unsigned char in[1024] = {0};
unsigned char out[1024] = {0};
unsigned char expected_out1[1024] = {0};
unsigned char expected_out2[1024] = {0};
unsigned char expected_out3[1024] = {0};
unsigned char expected_out4[1024] = {0};
memcpy(ctx.key, "\x2b\x7e\x15\x16\x28\xae\xd2\xa6\xab\xf7\x15\x88\x09\xcf\x4f\x3c", 16);
memcpy(expected_out1, "\x76\x49\xab\xac\x81\x19\xb2\x46\xce\xe9\x8e\x9b\x12\xe9\x19\x7d", 16);
memcpy(expected_out2, "\x50\x86\xcb\x9b\x50\x72\x19\xee\x95\xdb\x11\x3a\x91\x76\x78\xb2", 16);
memcpy(expected_out3, "\x73\xbe\xd6\xb8\xe3\xc1\x74\x3b\x71\x16\xe6\x9e\x22\x22\x95\x16", 16);
memcpy(expected_out4, "\x3f\xf1\xca\xa1\x68\x1f\xac\x09\x12\x0e\xca\x30\x75\x86\xe1\xa7", 16);
ctx.mode = MODE_CBC;
rijndael_setup(&ctx, 16, ctx.key);
memcpy(ctx.iv, "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0A\x0B\x0C\x0D\x0E\x0F", 16);
memcpy(in, "\x6b\xc1\xbe\xe2\x2e\x40\x9f\x96\xe9\x3d\x7e\x11\x73\x93\x17\x2a", 16);
block_encrypt(&ctx, in, 16, out, ctx.iv);
CU_ASSERT(memcmp(out, expected_out1, 16) == 0);
memcpy(ctx.iv, "\x76\x49\xAB\xAC\x81\x19\xB2\x46\xCE\xE9\x8E\x9B\x12\xE9\x19\x7D", 16);
memcpy(in, "\xae\x2d\x8a\x57\x1e\x03\xac\x9c\x9e\xb7\x6f\xac\x45\xaf\x8e\x51", 16);
block_encrypt(&ctx, in, 16, out, ctx.iv);
CU_ASSERT(memcmp(out, expected_out2, 16) == 0);
memcpy(ctx.iv, "\x50\x86\xCB\x9B\x50\x72\x19\xEE\x95\xDB\x11\x3A\x91\x76\x78\xB2", 16);
memcpy(in, "\x30\xc8\x1c\x46\xa3\x5c\xe4\x11\xe5\xfb\xc1\x19\x1a\x0a\x52\xef", 16);
block_encrypt(&ctx, in, 16, out, ctx.iv);
CU_ASSERT(memcmp(out, expected_out3, 16) == 0);
memcpy(ctx.iv, "\x73\xBE\xD6\xB8\xE3\xC1\x74\x3B\x71\x16\xE6\x9E\x22\x22\x95\x16", 16);
memcpy(in, "\xf6\x9f\x24\x45\xdf\x4f\x9b\x17\xad\x2b\x41\x7b\xe6\x6c\x37\x10", 16);
block_encrypt(&ctx, in, 16, out, ctx.iv);
CU_ASSERT(memcmp(out, expected_out4, 16) == 0);
}
DECLARE_UTEST(test_aes_cbc_192, "aes cbc 192 test vectors") //http://www.inconteam.com/software-development/41-encryption/55-aes-test-vectors#aes-cbc-128
{ //would like to test rij_encrypt against known test vectors, but the method of generating the key and iv make this impossible.
RIJNDAEL_context ctx;
unsigned char in[1024] = {0};
unsigned char out[1024] = {0};
unsigned char expected_out1[1024] = {0};
unsigned char expected_out2[1024] = {0};
unsigned char expected_out3[1024] = {0};
unsigned char expected_out4[1024] = {0};
memcpy(ctx.key, "\x8e\x73\xb0\xf7\xda\x0e\x64\x52\xc8\x10\xf3\x2b\x80\x90\x79\xe5\x62\xf8\xea\xd2\x52\x2c\x6b\x7b", 24);
memcpy(expected_out1, "\x4f\x02\x1d\xb2\x43\xbc\x63\x3d\x71\x78\x18\x3a\x9f\xa0\x71\xe8", 16);
memcpy(expected_out2, "\xb4\xd9\xad\xa9\xad\x7d\xed\xf4\xe5\xe7\x38\x76\x3f\x69\x14\x5a", 16);
memcpy(expected_out3, "\x57\x1b\x24\x20\x12\xfb\x7a\xe0\x7f\xa9\xba\xac\x3d\xf1\x02\xe0", 16);
memcpy(expected_out4, "\x08\xb0\xe2\x79\x88\x59\x88\x81\xd9\x20\xa9\xe6\x4f\x56\x15\xcd", 16);
ctx.mode = MODE_CBC;
rijndael_setup(&ctx, 24, ctx.key);
memcpy(ctx.iv, "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0A\x0B\x0C\x0D\x0E\x0F", 16);
memcpy(in, "\x6b\xc1\xbe\xe2\x2e\x40\x9f\x96\xe9\x3d\x7e\x11\x73\x93\x17\x2a", 16);
block_encrypt(&ctx, in, 16, out, ctx.iv);
CU_ASSERT(memcmp(out, expected_out1, 16) == 0);
memcpy(ctx.iv, out, 16);
memcpy(in, "\xae\x2d\x8a\x57\x1e\x03\xac\x9c\x9e\xb7\x6f\xac\x45\xaf\x8e\x51", 16);
block_encrypt(&ctx, in, 16, out, ctx.iv);
CU_ASSERT(memcmp(out, expected_out2, 16) == 0);
memcpy(ctx.iv, out, 16);
memcpy(in, "\x30\xc8\x1c\x46\xa3\x5c\xe4\x11\xe5\xfb\xc1\x19\x1a\x0a\x52\xef", 16);
block_encrypt(&ctx, in, 16, out, ctx.iv);
CU_ASSERT(memcmp(out, expected_out3, 16) == 0);
memcpy(ctx.iv, out, 16);
memcpy(in, "\xf6\x9f\x24\x45\xdf\x4f\x9b\x17\xad\x2b\x41\x7b\xe6\x6c\x37\x10", 16);
block_encrypt(&ctx, in, 16, out, ctx.iv);
CU_ASSERT(memcmp(out, expected_out4, 16) == 0);
}
DECLARE_UTEST(test_aes_cbc_256, "aes cbc 256 test vectors") //http://www.inconteam.com/software-development/41-encryption/55-aes-test-vectors#aes-cbc-128
{ //would like to test rij_encrypt against known test vectors, but the method of generating the key and iv make this impossible.
RIJNDAEL_context ctx;
unsigned char in[1024] = {0};
unsigned char out[1024] = {0};
unsigned char expected_out1[1024] = {0};
unsigned char expected_out2[1024] = {0};
unsigned char expected_out3[1024] = {0};
unsigned char expected_out4[1024] = {0};
memcpy(ctx.key, "\x60\x3d\xeb\x10\x15\xca\x71\xbe\x2b\x73\xae\xf0\x85\x7d\x77\x81\x1f\x35\x2c\x07\x3b\x61\x08\xd7\x2d\x98\x10\xa3\x09\x14\xdf\xf4", 32);
memcpy(expected_out1, "\xf5\x8c\x4c\x04\xd6\xe5\xf1\xba\x77\x9e\xab\xfb\x5f\x7b\xfb\xd6", 16);
memcpy(expected_out2, "\x9c\xfc\x4e\x96\x7e\xdb\x80\x8d\x67\x9f\x77\x7b\xc6\x70\x2c\x7d", 16);
memcpy(expected_out3, "\x39\xf2\x33\x69\xa9\xd9\xba\xcf\xa5\x30\xe2\x63\x04\x23\x14\x61", 16);
memcpy(expected_out4, "\xb2\xeb\x05\xe2\xc3\x9b\xe9\xfc\xda\x6c\x19\x07\x8c\x6a\x9d\x1b", 16);
ctx.mode = MODE_CBC;
rijndael_setup(&ctx, 32, ctx.key);
memcpy(ctx.iv, "\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0A\x0B\x0C\x0D\x0E\x0F", 16);
memcpy(in, "\x6b\xc1\xbe\xe2\x2e\x40\x9f\x96\xe9\x3d\x7e\x11\x73\x93\x17\x2a", 16);
block_encrypt(&ctx, in, 16, out, ctx.iv);
CU_ASSERT(memcmp(out, expected_out1, 16) == 0);
memcpy(ctx.iv, out, 16);
memcpy(in, "\xae\x2d\x8a\x57\x1e\x03\xac\x9c\x9e\xb7\x6f\xac\x45\xaf\x8e\x51", 16);
block_encrypt(&ctx, in, 16, out, ctx.iv);
CU_ASSERT(memcmp(out, expected_out2, 16) == 0);
memcpy(ctx.iv, out, 16);
memcpy(in, "\x30\xc8\x1c\x46\xa3\x5c\xe4\x11\xe5\xfb\xc1\x19\x1a\x0a\x52\xef", 16);
block_encrypt(&ctx, in, 16, out, ctx.iv);
CU_ASSERT(memcmp(out, expected_out3, 16) == 0);
memcpy(ctx.iv, out, 16);
memcpy(in, "\xf6\x9f\x24\x45\xdf\x4f\x9b\x17\xad\x2b\x41\x7b\xe6\x6c\x37\x10", 16);
block_encrypt(&ctx, in, 16, out, ctx.iv);
CU_ASSERT(memcmp(out, expected_out4, 16) == 0);
}
int register_ts_aes_test(void)
{
ts_init(&TEST_SUITE(digest_test), TEST_SUITE_DESCR(digest_test), NULL, NULL);
ts_add_utest(&TEST_SUITE(digest_test), UTEST_FCT(test_aes_ecb_128), UTEST_DESCR(test_aes_ecb_128));
ts_add_utest(&TEST_SUITE(digest_test), UTEST_FCT(test_aes_ecb_192), UTEST_DESCR(test_aes_ecb_192));
ts_add_utest(&TEST_SUITE(digest_test), UTEST_FCT(test_aes_ecb_256), UTEST_DESCR(test_aes_ecb_256));
ts_add_utest(&TEST_SUITE(digest_test), UTEST_FCT(test_aes_cbc_128), UTEST_DESCR(test_aes_cbc_128));
ts_add_utest(&TEST_SUITE(digest_test), UTEST_FCT(test_aes_cbc_192), UTEST_DESCR(test_aes_cbc_192));
ts_add_utest(&TEST_SUITE(digest_test), UTEST_FCT(test_aes_cbc_256), UTEST_DESCR(test_aes_cbc_256));
return register_ts(&TEST_SUITE(digest_test));
}
#endif
/***EOF***/

View File

@ -28,7 +28,9 @@
#include "fko_common.h"
#include "digest.h"
#include "base64.h"
#ifdef HAVE_C_UNIT_TESTS
DECLARE_TEST_SUITE(digest_test, "digest functions test suite");
#endif
/* Compute MD5 hash on in and store result in out.
*/
void
@ -154,4 +156,423 @@ sha512_base64(char *out, unsigned char *in, size_t size)
strip_b64_eq(out);
}
void
sha3_256(unsigned char *out, unsigned char *in, size_t size)
{
FIPS202_SHA3_256(in, size, out);
}
void
sha3_256_base64(char *out, unsigned char *in, size_t size)
{
uint8_t md[SHA3_256_DIGEST_LEN];
FIPS202_SHA3_256(in, size, md);
b64_encode(md, out, SHA3_256_DIGEST_LEN);
strip_b64_eq(out);
}
void
sha3_512(unsigned char *out, unsigned char *in, size_t size)
{
FIPS202_SHA3_512(in, size, out);
}
void
sha3_512_base64(char *out, unsigned char *in, size_t size)
{
uint8_t md[SHA3_512_DIGEST_LEN];
FIPS202_SHA3_512(in, size, md);
b64_encode(md, out, SHA3_512_DIGEST_LEN);
strip_b64_eq(out);
}
#ifdef HAVE_C_UNIT_TESTS
DECLARE_UTEST(test_md5, "md5 test vectors") //https://tools.ietf.org/html/rfc1321.html
{
char msg[1024] = {0};
unsigned char digest[1024] = {0};
char digest_txt[1024] = {0};
char expected_digest1[1024] = {0};
char expected_digest2[1024] = {0};
char expected_digest3[1024] = {0};
char expected_digest4[1024] = {0};
char expected_digest5[1024] = {0};
char expected_digest6[1024] = {0};
char expected_digest7[1024] = {0};
int i = 0;
strcpy(expected_digest1, "d41d8cd98f00b204e9800998ecf8427e");
strcpy(expected_digest2, "0cc175b9c0f1b6a831c399e269772661");
strcpy(expected_digest3, "900150983cd24fb0d6963f7d28e17f72");
strcpy(expected_digest4, "f96b697d7cb7938d525a2f31aaf161d0");
strcpy(expected_digest5, "c3fcd3d76192e4007dfb496cca67e13b");
strcpy(expected_digest6, "d174ab98d277d9f5a5611c2c9f419d9f");
strcpy(expected_digest7, "57edf4a22be3c955ac49da2e2107b67a");
strcpy(msg, "");
md5(digest, (unsigned char *)msg, strlen(msg));
for ( i = 0; i < MD5_DIGEST_LEN; i++)
{
sprintf(digest_txt + (2 * i), "%02x", digest[i]);
}
CU_ASSERT(memcmp(digest_txt, expected_digest1, MD5_DIGEST_LEN) == 0);
strcpy(msg, "a");
md5(digest, (unsigned char *)msg, strlen(msg));
for ( i = 0; i < MD5_DIGEST_LEN; i++)
{
sprintf(digest_txt + (2 * i), "%02x", digest[i]);
}
CU_ASSERT(memcmp(digest_txt, expected_digest2, MD5_DIGEST_LEN) == 0);
strcpy(msg, "abc");
md5(digest, (unsigned char *)msg, strlen(msg));
for ( i = 0; i < MD5_DIGEST_LEN; i++)
{
sprintf(digest_txt + (2 * i), "%02x", digest[i]);
}
CU_ASSERT(memcmp(digest_txt, expected_digest3, MD5_DIGEST_LEN) == 0);
strcpy(msg, "message digest");
md5(digest, (unsigned char *)msg, strlen(msg));
for ( i = 0; i < MD5_DIGEST_LEN; i++)
{
sprintf(digest_txt + (2 * i), "%02x", digest[i]);
}
CU_ASSERT(memcmp(digest_txt, expected_digest4, MD5_DIGEST_LEN) == 0);
strcpy(msg, "abcdefghijklmnopqrstuvwxyz");
md5(digest, (unsigned char *)msg, strlen(msg));
for ( i = 0; i < MD5_DIGEST_LEN; i++)
{
sprintf(digest_txt + (2 * i), "%02x", digest[i]);
}
CU_ASSERT(memcmp(digest_txt, expected_digest5, MD5_DIGEST_LEN) == 0);
strcpy(msg, "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789");
md5(digest, (unsigned char *)msg, strlen(msg));
for ( i = 0; i < MD5_DIGEST_LEN; i++)
{
sprintf(digest_txt + (2 * i), "%02x", digest[i]);
}
CU_ASSERT(memcmp(digest_txt, expected_digest6, MD5_DIGEST_LEN) == 0);
strcpy(msg, "12345678901234567890123456789012345678901234567890123456789012345678901234567890");
md5(digest, (unsigned char *)msg, strlen(msg));
for ( i = 0; i < MD5_DIGEST_LEN; i++)
{
sprintf(digest_txt + (2 * i), "%02x", digest[i]);
}
CU_ASSERT(memcmp(digest_txt, expected_digest7, MD5_DIGEST_LEN) == 0);
}
DECLARE_UTEST(test_sha1, "sha1 test vectors") //http://www.di-mgt.com.au/sha_testvectors.html
{
char msg[1024] = {0};
unsigned char digest[1024] = {0};
char digest_txt[1024] = {0};
char expected_digest1[1024] = {0};
char expected_digest2[1024] = {0};
char expected_digest3[1024] = {0};
char expected_digest4[1024] = {0};
int i = 0;
strcpy(msg, "abc");
strcpy(expected_digest1, "a9993e364706816aba3e25717850c26c9cd0d89d");
sha1(digest, (unsigned char *)msg, strlen(msg));
for ( i = 0; i < SHA1_DIGEST_LEN; i++)
{
sprintf(digest_txt + (2 * i), "%02x", digest[i]);
}
CU_ASSERT(memcmp(digest_txt, expected_digest1, SHA1_DIGEST_LEN) == 0);
strcpy(msg, "");
strcpy(expected_digest2, "da39a3ee5e6b4b0d3255bfef95601890afd80709");
sha1(digest, (unsigned char *)msg, strlen(msg));
for ( i = 0; i < SHA1_DIGEST_LEN; i++)
{
sprintf(digest_txt + (2 * i), "%02x", digest[i]);
}
CU_ASSERT(memcmp(digest_txt, expected_digest2, SHA1_DIGEST_LEN) == 0);
strcpy(msg, "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq");
strcpy(expected_digest3, "84983e441c3bd26ebaae4aa1f95129e5e54670f1");
sha1(digest, (unsigned char *)msg, strlen(msg));
for ( i = 0; i < SHA1_DIGEST_LEN; i++)
{
sprintf(digest_txt + (2 * i), "%02x", digest[i]);
}
CU_ASSERT(memcmp(digest_txt, expected_digest3, SHA1_DIGEST_LEN) == 0);
strcpy(msg, "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmnhijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu");
strcpy(expected_digest4, "a49b2446a02c645bf419f995b67091253a04a259");
sha1(digest, (unsigned char *)msg, strlen(msg));
for ( i = 0; i < SHA1_DIGEST_LEN; i++)
{
sprintf(digest_txt + (2 * i), "%02x", digest[i]);
}
CU_ASSERT(memcmp(digest_txt, expected_digest4, SHA1_DIGEST_LEN) == 0);
}
DECLARE_UTEST(test_sha256, "sha-256 test vectors") //http://www.di-mgt.com.au/sha_testvectors.html
{
char msg[1024] = {0};
unsigned char digest[1024] = {0};
char digest_txt[1024] = {0};
char expected_digest1[1024] = {0};
char expected_digest2[1024] = {0};
char expected_digest3[1024] = {0};
char expected_digest4[1024] = {0};
int i = 0;
strcpy(msg, "abc");
strcpy(expected_digest1, "ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad");
sha256(digest, (unsigned char *)msg, strlen(msg));
for ( i = 0; i < SHA256_DIGEST_LEN; i++)
{
sprintf(digest_txt + (2 * i), "%02x", digest[i]);
}
CU_ASSERT(memcmp(digest_txt, expected_digest1, SHA256_DIGEST_LEN) == 0);
strcpy(msg, "");
strcpy(expected_digest2, "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855");
sha256(digest, (unsigned char *)msg, strlen(msg));
for ( i = 0; i < SHA256_DIGEST_LEN; i++)
{
sprintf(digest_txt + (2 * i), "%02x", digest[i]);
}
CU_ASSERT(memcmp(digest_txt, expected_digest2, SHA256_DIGEST_LEN) == 0);
strcpy(msg, "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq");
strcpy(expected_digest3, "248d6a61d20638b8e5c026930c3e6039a33ce45964ff2167f6ecedd419db06c1");
sha256(digest, (unsigned char *)msg, strlen(msg));
for ( i = 0; i < SHA256_DIGEST_LEN; i++)
{
sprintf(digest_txt + (2 * i), "%02x", digest[i]);
}
CU_ASSERT(memcmp(digest_txt, expected_digest3, SHA256_DIGEST_LEN) == 0);
strcpy(msg, "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmnhijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu");
strcpy(expected_digest4, "cf5b16a778af8380036ce59e7b0492370b249b11e8f07a51afac45037afee9d1");
sha256(digest, (unsigned char *)msg, strlen(msg));
for ( i = 0; i < SHA256_DIGEST_LEN; i++)
{
sprintf(digest_txt + (2 * i), "%02x", digest[i]);
}
CU_ASSERT(memcmp(digest_txt, expected_digest4, SHA256_DIGEST_LEN) == 0);
}
DECLARE_UTEST(test_sha384, "sha-384 test vectors") //http://www.di-mgt.com.au/sha_testvectors.html
{
char msg[1024] = {0};
unsigned char digest[1024] = {0};
char digest_txt[1024] = {0};
char expected_digest1[1024] = {0};
char expected_digest2[1024] = {0};
char expected_digest3[1024] = {0};
char expected_digest4[1024] = {0};
int i = 0;
strcpy(msg, "abc");
strcpy(expected_digest1, "cb00753f45a35e8bb5a03d699ac65007272c32ab0eded1631a8b605a43ff5bed8086072ba1e7cc2358baeca134c825a7");
sha384(digest, (unsigned char *)msg, strlen(msg));
for ( i = 0; i < SHA384_DIGEST_LEN; i++)
{
sprintf(digest_txt + (2 * i), "%02x", digest[i]);
}
CU_ASSERT(memcmp(digest_txt, expected_digest1, SHA384_DIGEST_LEN) == 0);
strcpy(msg, "");
strcpy(expected_digest2, "38b060a751ac96384cd9327eb1b1e36a21fdb71114be07434c0cc7bf63f6e1da274edebfe76f65fbd51ad2f14898b95b");
sha384(digest, (unsigned char *)msg, strlen(msg));
for ( i = 0; i < SHA384_DIGEST_LEN; i++)
{
sprintf(digest_txt + (2 * i), "%02x", digest[i]);
}
CU_ASSERT(memcmp(digest_txt, expected_digest2, SHA384_DIGEST_LEN) == 0);
strcpy(msg, "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq");
strcpy(expected_digest3, "3391fdddfc8dc7393707a65b1b4709397cf8b1d162af05abfe8f450de5f36bc6b0455a8520bc4e6f5fe95b1fe3c8452b");
sha384(digest, (unsigned char *)msg, strlen(msg));
for ( i = 0; i < SHA384_DIGEST_LEN; i++)
{
sprintf(digest_txt + (2 * i), "%02x", digest[i]);
}
CU_ASSERT(memcmp(digest_txt, expected_digest3, SHA384_DIGEST_LEN) == 0);
strcpy(msg, "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmnhijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu");
strcpy(expected_digest4, "09330c33f71147e83d192fc782cd1b4753111b173b3b05d22fa08086e3b0f712fcc7c71a557e2db966c3e9fa91746039");
sha384(digest, (unsigned char *)msg, strlen(msg));
for ( i = 0; i < SHA384_DIGEST_LEN; i++)
{
sprintf(digest_txt + (2 * i), "%02x", digest[i]);
}
CU_ASSERT(memcmp(digest_txt, expected_digest4, SHA384_DIGEST_LEN) == 0);
}
DECLARE_UTEST(test_sha512, "sha-512 test vectors") //http://www.di-mgt.com.au/sha_testvectors.html
{
char msg[1024] = {0};
unsigned char digest[1024] = {0};
char digest_txt[1024] = {0};
char expected_digest1[1024] = {0};
char expected_digest2[1024] = {0};
char expected_digest3[1024] = {0};
char expected_digest4[1024] = {0};
int i = 0;
strcpy(msg, "abc");
strcpy(expected_digest1, "ddaf35a193617abacc417349ae20413112e6fa4e89a97ea20a9eeee64b55d39a2192992a274fc1a836ba3c23a3feebbd454d4423643ce80e2a9ac94fa54ca49f");
sha512(digest, (unsigned char *)msg, strlen(msg));
for ( i = 0; i < SHA512_DIGEST_LEN; i++)
{
sprintf(digest_txt + (2 * i), "%02x", digest[i]);
}
CU_ASSERT(memcmp(digest_txt, expected_digest1, SHA512_DIGEST_LEN) == 0);
strcpy(msg, "");
strcpy(expected_digest2, "cf83e1357eefb8bdf1542850d66d8007d620e4050b5715dc83f4a921d36ce9ce47d0d13c5d85f2b0ff8318d2877eec2f63b931bd47417a81a538327af927da3e");
sha512(digest, (unsigned char *)msg, strlen(msg));
for ( i = 0; i < SHA512_DIGEST_LEN; i++)
{
sprintf(digest_txt + (2 * i), "%02x", digest[i]);
}
CU_ASSERT(memcmp(digest_txt, expected_digest2, SHA512_DIGEST_LEN) == 0);
strcpy(msg, "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq");
strcpy(expected_digest3, "204a8fc6dda82f0a0ced7beb8e08a41657c16ef468b228a8279be331a703c33596fd15c13b1b07f9aa1d3bea57789ca031ad85c7a71dd70354ec631238ca3445");
sha512(digest, (unsigned char *)msg, strlen(msg));
for ( i = 0; i < SHA512_DIGEST_LEN; i++)
{
sprintf(digest_txt + (2 * i), "%02x", digest[i]);
}
CU_ASSERT(memcmp(digest_txt, expected_digest3, SHA512_DIGEST_LEN) == 0);
strcpy(msg, "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmnhijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu");
strcpy(expected_digest4, "8e959b75dae313da8cf4f72814fc143f8f7779c6eb9f7fa17299aeadb6889018501d289e4900f7e4331b99dec4b5433ac7d329eeb6dd26545e96e55b874be909");
sha512(digest, (unsigned char *)msg, strlen(msg));
for ( i = 0; i < SHA512_DIGEST_LEN; i++)
{
sprintf(digest_txt + (2 * i), "%02x", digest[i]);
}
CU_ASSERT(memcmp(digest_txt, expected_digest4, SHA512_DIGEST_LEN) == 0);
}
DECLARE_UTEST(test_sha3_256, "sha3_256 test vectors") //http://www.di-mgt.com.au/sha_testvectors.html
{
char msg[1024] = {0};
unsigned char digest[1024] = {0};
char digest_txt[1024] = {0};
char expected_digest1[1024] = {0};
char expected_digest2[1024] = {0};
char expected_digest3[1024] = {0};
char expected_digest4[1024] = {0};
int i = 0;
strcpy(msg, "abc");
strcpy(expected_digest1, "3a985da74fe225b2045c172d6bd390bd855f086e3e9d525b46bfe24511431532");
sha3_256(digest, (unsigned char *)msg, strlen(msg));
for ( i = 0; i < SHA3_256_DIGEST_LEN; i++)
{
sprintf(digest_txt + (2 * i), "%02x", digest[i]);
}
CU_ASSERT(memcmp(digest_txt, expected_digest1, SHA3_256_DIGEST_LEN) == 0);
strcpy(msg, "");
strcpy(expected_digest2, "a7ffc6f8bf1ed76651c14756a061d662f580ff4de43b49fa82d80a4b80f8434a");
sha3_256(digest, (unsigned char *)msg, strlen(msg));
for ( i = 0; i < SHA3_256_DIGEST_LEN; i++)
{
sprintf(digest_txt + (2 * i), "%02x", digest[i]);
}
CU_ASSERT(memcmp(digest_txt, expected_digest2, SHA3_256_DIGEST_LEN) == 0);
strcpy(msg, "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq");
strcpy(expected_digest3, "41c0dba2a9d6240849100376a8235e2c82e1b9998a999e21db32dd97496d3376");
sha3_256(digest, (unsigned char *)msg, strlen(msg));
for ( i = 0; i < SHA3_256_DIGEST_LEN; i++)
{
sprintf(digest_txt + (2 * i), "%02x", digest[i]);
}
CU_ASSERT(memcmp(digest_txt, expected_digest3, SHA3_256_DIGEST_LEN) == 0);
strcpy(msg, "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmnhijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu");
strcpy(expected_digest4, "916f6061fe879741ca6469b43971dfdb28b1a32dc36cb3254e812be27aad1d18");
sha3_256(digest, (unsigned char *)msg, strlen(msg));
for ( i = 0; i < SHA3_256_DIGEST_LEN; i++)
{
sprintf(digest_txt + (2 * i), "%02x", digest[i]);
}
CU_ASSERT(memcmp(digest_txt, expected_digest4, SHA3_256_DIGEST_LEN) == 0);
}
DECLARE_UTEST(test_sha3_512, "sha3_512 test vectors") //http://www.di-mgt.com.au/sha_testvectors.html
{
char msg[1024] = {0};
unsigned char digest[1024] = {0};
char digest_txt[1024] = {0};
char expected_digest1[1024] = {0};
char expected_digest2[1024] = {0};
char expected_digest3[1024] = {0};
char expected_digest4[1024] = {0};
int i = 0;
strcpy(msg, "abc");
strcpy(expected_digest1, "b751850b1a57168a5693cd924b6b096e08f621827444f70d884f5d0240d2712e10e116e9192af3c91a7ec57647e3934057340b4cf408d5a56592f8274eec53f0");
sha3_512(digest, (unsigned char *)msg, strlen(msg));
for ( i = 0; i < SHA3_512_DIGEST_LEN; i++)
{
sprintf(digest_txt + (2 * i), "%02x", digest[i]);
}
CU_ASSERT(memcmp(digest_txt, expected_digest1, SHA3_512_DIGEST_LEN) == 0);
strcpy(msg, "");
strcpy(expected_digest2, "a69f73cca23a9ac5c8b567dc185a756e97c982164fe25859e0d1dcc1475c80a615b2123af1f5f94c11e3e9402c3ac558f500199d95b6d3e301758586281dcd26");
sha3_512(digest, (unsigned char *)msg, strlen(msg));
for ( i = 0; i < SHA3_512_DIGEST_LEN; i++)
{
sprintf(digest_txt + (2 * i), "%02x", digest[i]);
}
CU_ASSERT(memcmp(digest_txt, expected_digest2, SHA3_512_DIGEST_LEN) == 0);
strcpy(msg, "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq");
strcpy(expected_digest3, "04a371e84ecfb5b8b77cb48610fca8182dd457ce6f326a0fd3d7ec2f1e91636dee691fbe0c985302ba1b0d8dc78c086346b533b49c030d99a27daf1139d6e75e");
sha3_512(digest, (unsigned char *)msg, strlen(msg));
for ( i = 0; i < SHA3_512_DIGEST_LEN; i++)
{
sprintf(digest_txt + (2 * i), "%02x", digest[i]);
}
CU_ASSERT(memcmp(digest_txt, expected_digest3, SHA3_512_DIGEST_LEN) == 0);
strcpy(msg, "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmnhijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu");
strcpy(expected_digest4, "afebb2ef542e6579c50cad06d2e578f9f8dd6881d7dc824d26360feebf18a4fa73e3261122948efcfd492e74e82e2189ed0fb440d187f382270cb455f21dd185");
sha3_512(digest, (unsigned char *)msg, strlen(msg));
for ( i = 0; i < SHA3_512_DIGEST_LEN; i++)
{
sprintf(digest_txt + (2 * i), "%02x", digest[i]);
}
CU_ASSERT(memcmp(digest_txt, expected_digest4, SHA3_512_DIGEST_LEN) == 0);
}
int register_ts_digest_test(void)
{
ts_init(&TEST_SUITE(digest_test), TEST_SUITE_DESCR(digest_test), NULL, NULL);
ts_add_utest(&TEST_SUITE(digest_test), UTEST_FCT(test_md5), UTEST_DESCR(test_md5));
ts_add_utest(&TEST_SUITE(digest_test), UTEST_FCT(test_sha1), UTEST_DESCR(test_sha1));
ts_add_utest(&TEST_SUITE(digest_test), UTEST_FCT(test_sha256), UTEST_DESCR(test_sha256));
ts_add_utest(&TEST_SUITE(digest_test), UTEST_FCT(test_sha384), UTEST_DESCR(test_sha384));
ts_add_utest(&TEST_SUITE(digest_test), UTEST_FCT(test_sha512), UTEST_DESCR(test_sha512));
ts_add_utest(&TEST_SUITE(digest_test), UTEST_FCT(test_sha3_256), UTEST_DESCR(test_sha3_256));
ts_add_utest(&TEST_SUITE(digest_test), UTEST_FCT(test_sha3_512), UTEST_DESCR(test_sha3_512));
return register_ts(&TEST_SUITE(digest_test));
}
#endif /* HAVE_C_UNIT_TESTS */
/***EOF***/

View File

@ -34,6 +34,7 @@
#include "md5.h"
#include "sha1.h"
#include "sha2.h"
#include "sha3.h"
/* Size calculation macros
*/
@ -49,6 +50,10 @@ void sha384(unsigned char* out, unsigned char* in, size_t size);
void sha384_base64(char* out, unsigned char* in, size_t size);
void sha512(unsigned char* out, unsigned char* in, size_t size);
void sha512_base64(char* out, unsigned char* in, size_t size);
void sha3_256(unsigned char* out, unsigned char* in, size_t size);
void sha3_256_base64(char* out, unsigned char* in, size_t size);
void sha3_512(unsigned char* out, unsigned char* in, size_t size);
void sha3_512_base64(char* out, unsigned char* in, size_t size);
#endif /* DIGEST_H */

View File

@ -87,6 +87,8 @@ typedef enum {
FKO_DIGEST_SHA256, /**< SHA256 digest type*/
FKO_DIGEST_SHA384, /**< SHA384 digest type*/
FKO_DIGEST_SHA512, /**< SHA512 digest type*/
FKO_DIGEST_SHA3_256, /**< SHA3 256 digest type*/
FKO_DIGEST_SHA3_512, /**< SHA3 512 digest type*/
FKO_LAST_DIGEST_TYPE /**< Always leave this as the last one */
} fko_digest_type_t;
@ -104,6 +106,8 @@ typedef enum {
FKO_HMAC_SHA256, /**< SHA256 HMAC type*/
FKO_HMAC_SHA384, /**< SHA384 HMAC type*/
FKO_HMAC_SHA512, /**< SHA512 HMAC type*/
FKO_HMAC_SHA3_256, /**< SHA3 256 HMAC type */
FKO_HMAC_SHA3_512, /**< SHA3 512 HMAC type*/
FKO_LAST_HMAC_MODE /**< Always leave this as the last one */
} fko_hmac_type_t;
@ -1394,6 +1398,10 @@ DLL_API int fko_gpg_signature_fpr_match(fko_ctx_t ctx, const char * const fpr,
#ifdef HAVE_C_UNIT_TESTS
int register_ts_fko_decode(void);
int register_ts_hmac_test(void);
int register_ts_digest_test(void);
int register_ts_aes_test(void);
#endif
#endif /* FKO_H */

View File

@ -193,6 +193,26 @@ set_digest(char *data, char **digest, short digest_type, int *digest_len)
*digest_len = SHA512_B64_LEN;
break;
case FKO_DIGEST_SHA3_256:
md = calloc(1, MD_HEX_SIZE(SHA3_256_DIGEST_LEN)+1);
if(md == NULL)
return(FKO_ERROR_MEMORY_ALLOCATION);
sha3_256_base64(md,
(unsigned char*)data, data_len);
*digest_len = SHA3_256_B64_LEN;
break;
case FKO_DIGEST_SHA3_512:
md = calloc(1, MD_HEX_SIZE(SHA3_512_DIGEST_LEN)+1);
if(md == NULL)
return(FKO_ERROR_MEMORY_ALLOCATION);
sha3_512_base64(md,
(unsigned char*)data, data_len);
*digest_len = SHA3_512_B64_LEN;
break;
default:
return(FKO_ERROR_INVALID_DIGEST_TYPE);
}

View File

@ -67,6 +67,10 @@ fko_verify_hmac(fko_ctx_t ctx,
hmac_b64_digest_len = SHA384_B64_LEN;
else if(ctx->hmac_type == FKO_HMAC_SHA512)
hmac_b64_digest_len = SHA512_B64_LEN;
else if(ctx->hmac_type == FKO_HMAC_SHA3_256)
hmac_b64_digest_len = SHA3_256_B64_LEN;
else if(ctx->hmac_type == FKO_HMAC_SHA3_512)
hmac_b64_digest_len = SHA3_512_B64_LEN;
else
return(FKO_ERROR_UNSUPPORTED_HMAC_MODE);
@ -289,6 +293,22 @@ int fko_set_spa_hmac(fko_ctx_t ctx,
hmac_digest_len = SHA512_DIGEST_LEN;
hmac_digest_str_len = SHA512_DIGEST_STR_LEN;
}
else if(ctx->hmac_type == FKO_HMAC_SHA3_256)
{
hmac_sha3_256(ctx->encrypted_msg,
ctx->encrypted_msg_len, hmac, hmac_key, hmac_key_len);
hmac_digest_len = SHA3_256_DIGEST_LEN;
hmac_digest_str_len = SHA3_256_DIGEST_STR_LEN;
}
else if(ctx->hmac_type == FKO_HMAC_SHA3_512)
{
hmac_sha3_512(ctx->encrypted_msg,
ctx->encrypted_msg_len, hmac, hmac_key, hmac_key_len);
hmac_digest_len = SHA3_512_DIGEST_LEN;
hmac_digest_str_len = SHA3_512_DIGEST_STR_LEN;
}
hmac_base64 = calloc(1, MD_HEX_SIZE(hmac_digest_len)+1);
if (hmac_base64 == NULL)

View File

@ -4,13 +4,16 @@
/**
* Register test suites from FKO files.
*
*
* The module should fetch functions according to used modules. All of them follow the same
* naming convention.
*/
static void register_test_suites(void)
{
register_ts_fko_decode();
register_ts_hmac_test();
register_ts_digest_test();
register_ts_aes_test();
}
/* The main() function for setting up and running the tests.

1210
lib/hmac.c

File diff suppressed because it is too large Load Diff

View File

@ -33,7 +33,7 @@
#include "digest.h"
#define MAX_DIGEST_BLOCK_LEN SHA512_BLOCK_LEN
#define MAX_DIGEST_BLOCK_LEN SHA3_256_BLOCK_LEN
/**
* \brief Generate MD5 based HMAC
*
@ -56,6 +56,10 @@ void hmac_sha384(const char *msg, const unsigned int msg_len,
unsigned char *hmac, const char *hmac_key, const int hmac_key_len);
void hmac_sha512(const char *msg, const unsigned int msg_len,
unsigned char *hmac, const char *hmac_key, const int hmac_key_len);
void hmac_sha3_256(const char *msg, const unsigned int msg_len,
unsigned char *hmac, const char *hmac_key, const int hmac_key_len);
void hmac_sha3_512(const char *msg, const unsigned int msg_len,
unsigned char *hmac, const char *hmac_key, const int hmac_key_len);
#endif /* HMAC_H */

334
lib/sha3.c Normal file
View File

@ -0,0 +1,334 @@
/*
Implementation by the Keccak, Keyak and Ketje Teams, namely, Guido Bertoni,
Joan Daemen, Michaël Peeters, Gilles Van Assche and Ronny Van Keer, hereby
denoted as "the implementer".
For more information, feedback or questions, please refer to our websites:
http://keccak.noekeon.org/
http://keyak.noekeon.org/
http://ketje.noekeon.org/
To the extent possible under law, the implementer has waived all copyright
and related or neighboring rights to the source code in this file.
http://creativecommons.org/publicdomain/zero/1.0/
*/
/*
================================================================
The purpose of this source file is to demonstrate a readable and compact
implementation of all the Keccak instances approved in the FIPS 202 standard,
including the hash functions and the extendable-output functions (XOFs).
We focused on clarity and on source-code compactness,
rather than on the performance.
The advantages of this implementation are:
+ The source code is compact, after removing the comments, that is. :-)
+ There are no tables with arbitrary constants.
+ For clarity, the comments link the operations to the specifications using
the same notation as much as possible.
+ There is no restriction in cryptographic features. In particular,
the SHAKE128 and SHAKE256 XOFs can produce any output length.
+ The code does not use much RAM, as all operations are done in place.
The drawbacks of this implementation are:
- There is no message queue. The whole message must be ready in a buffer.
- It is not optimized for peformance.
The implementation is even simpler on a little endian platform. Just define the
LITTLE_ENDIAN symbol in that case.
For a more complete set of implementations, please refer to
the Keccak Code Package at https://github.com/gvanas/KeccakCodePackage
For more information, please refer to:
* [Keccak Reference] http://keccak.noekeon.org/Keccak-reference-3.0.pdf
* [Keccak Specifications Summary] http://keccak.noekeon.org/specs_summary.html
This file uses UTF-8 encoding, as some comments use Greek letters.
================================================================
*/
/**
* Function to compute the Keccak[r, c] sponge function over a given input.
* @param rate The value of the rate r.
* @param capacity The value of the capacity c.
* @param input Pointer to the input message.
* @param inputByteLen The number of input bytes provided in the input message.
* @param delimitedSuffix Bits that will be automatically appended to the end
* of the input message, as in domain separation.
* This is a byte containing from 0 to 7 bits
* These <i>n</i> bits must be in the least significant bit positions
* and must be delimited with a bit 1 at position <i>n</i>
* (counting from 0=LSB to 7=MSB) and followed by bits 0
* from position <i>n</i>+1 to position 7.
* Some examples:
* - If no bits are to be appended, then @a delimitedSuffix must be 0x01.
* - If the 2-bit sequence 0,1 is to be appended (as for SHA3-*), @a delimitedSuffix must be 0x06.
* - If the 4-bit sequence 1,1,1,1 is to be appended (as for SHAKE*), @a delimitedSuffix must be 0x1F.
* - If the 7-bit sequence 1,1,0,1,0,0,0 is to be absorbed, @a delimitedSuffix must be 0x8B.
* @param output Pointer to the buffer where to store the output.
* @param outputByteLen The number of output bytes desired.
* @pre One must have r+c=1600 and the rate a multiple of 8 bits in this implementation.
*/
//void Keccak(unsigned int rate, unsigned int capacity, const unsigned char *input, unsigned long long int inputByteLen, unsigned char delimitedSuffix, unsigned char *output, unsigned long long int outputByteLen);
/**
* Function to compute SHAKE128 on the input message with any output length.
*/
#include "sha3.h"
void FIPS202_SHAKE128(const unsigned char *input, unsigned int inputByteLen, unsigned char *output, int outputByteLen)
{
Keccak(1344, 256, input, inputByteLen, 0x1F, output, outputByteLen);
}
/**
* Function to compute SHAKE256 on the input message with any output length.
*/
void FIPS202_SHAKE256(const unsigned char *input, unsigned int inputByteLen, unsigned char *output, int outputByteLen)
{
Keccak(1088, 512, input, inputByteLen, 0x1F, output, outputByteLen);
}
/**
* Function to compute SHA3-224 on the input message. The output length is fixed to 28 bytes.
*/
void FIPS202_SHA3_224(const unsigned char *input, unsigned int inputByteLen, unsigned char *output)
{
Keccak(1152, 448, input, inputByteLen, 0x06, output, 28);
}
/**
* Function to compute SHA3-256 on the input message. The output length is fixed to 32 bytes.
*/
void FIPS202_SHA3_256(const unsigned char *input, unsigned int inputByteLen, unsigned char *output)
{
Keccak(1088, 512, input, inputByteLen, 0x06, output, 32);
}
/**
* Function to compute SHA3-384 on the input message. The output length is fixed to 48 bytes.
*/
void FIPS202_SHA3_384(const unsigned char *input, unsigned int inputByteLen, unsigned char *output)
{
Keccak(832, 768, input, inputByteLen, 0x06, output, 48);
}
/**
* Function to compute SHA3-512 on the input message. The output length is fixed to 64 bytes.
*/
void FIPS202_SHA3_512(const unsigned char *input, unsigned int inputByteLen, unsigned char *output)
{
Keccak(576, 1024, input, inputByteLen, 0x06, output, 64);
}
/*
================================================================
Technicalities
================================================================
*/
typedef unsigned char UINT8;
typedef unsigned long long int UINT64;
typedef UINT64 tKeccakLane;
#ifndef LITTLE_ENDIAN
/** Function to load a 64-bit value using the little-endian (LE) convention.
* On a LE platform, this could be greatly simplified using a cast.
*/
static UINT64 load64(const UINT8 *x)
{
int i;
UINT64 u=0;
for(i=7; i>=0; --i) {
u <<= 8;
u |= x[i];
}
return u;
}
/** Function to store a 64-bit value using the little-endian (LE) convention.
* On a LE platform, this could be greatly simplified using a cast.
*/
static void store64(UINT8 *x, UINT64 u)
{
unsigned int i;
for(i=0; i<8; ++i) {
x[i] = u;
u >>= 8;
}
}
/** Function to XOR into a 64-bit value using the little-endian (LE) convention.
* On a LE platform, this could be greatly simplified using a cast.
*/
static void xor64(UINT8 *x, UINT64 u)
{
unsigned int i;
for(i=0; i<8; ++i) {
x[i] ^= u;
u >>= 8;
}
}
#endif
/*
================================================================
A readable and compact implementation of the Keccak-f[1600] permutation.
================================================================
*/
#define ROL64(a, offset) ((((UINT64)a) << offset) ^ (((UINT64)a) >> (64-offset)))
#define i(x, y) ((x)+5*(y))
#ifdef LITTLE_ENDIAN
#define readLane(x, y) (((tKeccakLane*)state)[i(x, y)])
#define writeLane(x, y, lane) (((tKeccakLane*)state)[i(x, y)]) = (lane)
#define XORLane(x, y, lane) (((tKeccakLane*)state)[i(x, y)]) ^= (lane)
#else
#define readLane(x, y) load64((UINT8*)state+sizeof(tKeccakLane)*i(x, y))
#define writeLane(x, y, lane) store64((UINT8*)state+sizeof(tKeccakLane)*i(x, y), lane)
#define XORLane(x, y, lane) xor64((UINT8*)state+sizeof(tKeccakLane)*i(x, y), lane)
#endif
/**
* Function that computes the linear feedback shift register (LFSR) used to
* define the round constants (see [Keccak Reference, Section 1.2]).
*/
int LFSR86540(UINT8 *LFSR)
{
int result = ((*LFSR) & 0x01) != 0;
if (((*LFSR) & 0x80) != 0)
// Primitive polynomial over GF(2): x^8+x^6+x^5+x^4+1
(*LFSR) = ((*LFSR) << 1) ^ 0x71;
else
(*LFSR) <<= 1;
return result;
}
/**
* Function that computes the Keccak-f[1600] permutation on the given state.
*/
void KeccakF1600_StatePermute(void *state)
{
unsigned int round, x, y, j, t;
UINT8 LFSRstate = 0x01;
for(round=0; round<24; round++) {
{ // === θ step (see [Keccak Reference, Section 2.3.2]) ===
tKeccakLane C[5], D;
// Compute the parity of the columns
for(x=0; x<5; x++)
C[x] = readLane(x, 0) ^ readLane(x, 1) ^ readLane(x, 2) ^ readLane(x, 3) ^ readLane(x, 4);
for(x=0; x<5; x++) {
// Compute the θ effect for a given column
D = C[(x+4)%5] ^ ROL64(C[(x+1)%5], 1);
// Add the θ effect to the whole column
for (y=0; y<5; y++)
XORLane(x, y, D);
}
}
{ // === ρ and π steps (see [Keccak Reference, Sections 2.3.3 and 2.3.4]) ===
tKeccakLane current, temp;
// Start at coordinates (1 0)
x = 1; y = 0;
current = readLane(x, y);
// Iterate over ((0 1)(2 3))^t * (1 0) for 0 ≤ t ≤ 23
for(t=0; t<24; t++) {
// Compute the rotation constant r = (t+1)(t+2)/2
unsigned int r = ((t+1)*(t+2)/2)%64;
// Compute ((0 1)(2 3)) * (x y)
unsigned int Y = (2*x+3*y)%5; x = y; y = Y;
// Swap current and state(x,y), and rotate
temp = readLane(x, y);
writeLane(x, y, ROL64(current, r));
current = temp;
}
}
{ // === χ step (see [Keccak Reference, Section 2.3.1]) ===
tKeccakLane temp[5];
for(y=0; y<5; y++) {
// Take a copy of the plane
for(x=0; x<5; x++)
temp[x] = readLane(x, y);
// Compute χ on the plane
for(x=0; x<5; x++)
writeLane(x, y, temp[x] ^((~temp[(x+1)%5]) & temp[(x+2)%5]));
}
}
{ // === ι step (see [Keccak Reference, Section 2.3.5]) ===
for(j=0; j<7; j++) {
unsigned int bitPosition = (1<<j)-1; //2^j-1
if (LFSR86540(&LFSRstate))
XORLane(0, 0, (tKeccakLane)1<<bitPosition);
}
}
}
}
/*
================================================================
A readable and compact implementation of the Keccak sponge functions
that use the Keccak-f[1600] permutation.
================================================================
*/
#include <string.h>
#define MIN(a, b) ((a) < (b) ? (a) : (b))
void Keccak(unsigned int rate, unsigned int capacity, const unsigned char *input, unsigned long long int inputByteLen, unsigned char delimitedSuffix, unsigned char *output, unsigned long long int outputByteLen)
{
UINT8 state[200];
unsigned int rateInBytes = rate/8;
unsigned int blockSize = 0;
unsigned int i;
if (((rate + capacity) != 1600) || ((rate % 8) != 0))
return;
// === Initialize the state ===
memset(state, 0, sizeof(state));
// === Absorb all the input blocks ===
while(inputByteLen > 0) {
blockSize = MIN(inputByteLen, rateInBytes);
for(i=0; i<blockSize; i++)
state[i] ^= input[i];
input += blockSize;
inputByteLen -= blockSize;
if (blockSize == rateInBytes) {
KeccakF1600_StatePermute(state);
blockSize = 0;
}
}
// === Do the padding and switch to the squeezing phase ===
// Absorb the last few bits and add the first bit of padding (which coincides with the delimiter in delimitedSuffix)
state[blockSize] ^= delimitedSuffix;
// If the first bit of padding is at position rate-1, we need a whole new block for the second bit of padding
if (((delimitedSuffix & 0x80) != 0) && (blockSize == (rateInBytes-1)))
KeccakF1600_StatePermute(state);
// Add the second bit of padding
state[rateInBytes-1] ^= 0x80;
// Switch to the squeezing phase
KeccakF1600_StatePermute(state);
// === Squeeze out all the output blocks ===
while(outputByteLen > 0) {
blockSize = MIN(outputByteLen, rateInBytes);
memcpy(output, state, blockSize);
output += blockSize;
outputByteLen -= blockSize;
if (outputByteLen > 0)
KeccakF1600_StatePermute(state);
}
}

40
lib/sha3.h Normal file
View File

@ -0,0 +1,40 @@
#define SHA3_256_DIGEST_LEN 32
#define SHA3_512_DIGEST_LEN 64
#define SHA3_256_BLOCK_LEN 136
#define SHA3_512_BLOCK_LEN 72
#define SHA3_256_B64_LEN 43
#define SHA3_512_B64_LEN 86
#define SHA3_256_DIGEST_STR_LEN (SHA3_256_DIGEST_LEN * 2 + 1)
#define SHA3_512_DIGEST_STR_LEN (SHA3_512_DIGEST_LEN * 2 + 1)
void Keccak(unsigned int rate, unsigned int capacity, const unsigned char *input, unsigned long long int inputByteLen, unsigned char delimitedSuffix, unsigned char *output, unsigned long long int outputByteLen);
/**
* Function to compute SHAKE128 on the input message with any output length.
*/
void FIPS202_SHAKE128(const unsigned char *input, unsigned int inputByteLen, unsigned char *output, int outputByteLen);
/**
* Function to compute SHAKE256 on the input message with any output length.
*/
void FIPS202_SHAKE256(const unsigned char *input, unsigned int inputByteLen, unsigned char *output, int outputByteLen);
/**
* Function to compute SHA3-224 on the input message. The output length is fixed to 28 bytes.
*/
void FIPS202_SHA3_224(const unsigned char *input, unsigned int inputByteLen, unsigned char *output);
/**
* Function to compute SHA3-256 on the input message. The output length is fixed to 32 bytes.
*/
void FIPS202_SHA3_256(const unsigned char *input, unsigned int inputByteLen, unsigned char *output);
/**
* Function to compute SHA3-384 on the input message. The output length is fixed to 48 bytes.
*/
void FIPS202_SHA3_384(const unsigned char *input, unsigned int inputByteLen, unsigned char *output);
/**
* Function to compute SHA3-512 on the input message. The output length is fixed to 64 bytes.
*/
void FIPS202_SHA3_512(const unsigned char *input, unsigned int inputByteLen, unsigned char *output);

View File

@ -1638,7 +1638,7 @@ parse_access_file(fko_srv_options_t *opts, char *access_filename, int *depth)
if(curr_acc->hmac_type < 0)
{
log_msg(LOG_ERR,
"[*] HMAC_DIGEST_TYPE argument '%s' must be one of {md5,sha1,sha256,sha384,sha512}",
"[*] HMAC_DIGEST_TYPE argument '%s' must be one of {md5,sha1,sha256,sha384,sha512,sha3_256,sha3_512}",
val);
fclose(file_ptr);
return EXIT_FAILURE;